题目内容

已知抛物线的解析式为y=(x-2)2+1,则这条抛物线的顶点坐标是( ).

A. (﹣2,1) B. (2,1) C. (2,﹣1) D. (1,2)

B 【解析】根据顶点式y=(x-h)2+k的顶点为(h,k),由y=(x-2)2+1为抛物线的顶点式,顶点坐标为(2,1). 故选:B.
练习册系列答案
相关题目

根据下列表格对应值:

x

3

4

5

y=ax2+bx+c

0.5

﹣0.5

﹣1

判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是(  )

A. x<3 B. x>5 C. 3<x<4 D. 4<x<5

C 【解析】试题分析:∵x=3时,y=0.5,即ax2+bx+c>0; x=4时,y=﹣0.5,即ax2+bx+c<0, ∴抛物线与x轴的一个交点在(3,0)和(4,0)之间, ∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3<x<4. 故选C.

在锐角三角形中,最大角α的取值范围是 (  )

A. 0°<α<90° B. 60°<α<90° C. 60°<α<180° D. 60°≤α<90°

D 【解析】三角形三个内角的和等于180°,设其他两个角分别为β和γ,由题意α<90°,α?β且α?γ,α+β+γ=180°,所以3α?180°,即α?60°. 故选:D.

如图,抛物线y=﹣x2+3x+4与x轴交于点A,B,与y轴交于点C,P(m,n)为第一象限内抛物线上的一点,点D的坐标为(0,6).

(1)OB=_________,抛物线的顶点坐标为_________________;

(2)当n=4时,求点P关于直线BC的对称点P′的坐标;

(3)是否存在直线PD,使直线PD所对应的一次函数随x的增大而增大?若存在,直接写出m的取值范围;若不存在,请说明理由.

(1)4,(,);(2)(0,1);(3)1<m<2. 【解析】 试题分析:(1)当y=0时,即﹣x2+3x+4=0,解得:x1=4,x2=﹣1,∴点A(﹣1,0)点B(4,0),∴OB=4,y=﹣x2+3x+4=,∴抛物线的顶点坐标为(,),故答案为:4,(,). (2)如图,连接CP,CP′, n=4时,﹣m2+3m+4=4,解得:m1=3,m2=0(舍去),∴这时P点...

如图所示,在同一平面直角坐标系中,作出①y=﹣3x2,②y=﹣,③y=﹣x2的图象,则从里到外的三条抛物线对应的函数依次是______(填序号)

① ③ ② 【解析】①y=?3x²,②y=?x²,③y=?x²中,二次项系数a分别为?3、?、?1, ∵|?3|>|?1|>,∴抛物线②y=?x²的开口最宽,抛物线①y=?3x²的开口最窄。 故答案为:①③②。

在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是(  )

A. B. C. D.

D 【解析】A.由函数y=mx+m的图象可知m<0,即函数y=?mx2+2x+2开口方向朝上,与图象不符,故A选项错误; B.由函数y=mx+m的图象可知m<0,对称轴为x=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误; C.由函数y=mx+m的图象可知m>0,即函数y=?mx2+2x+2开口方向朝下,与图象不符,故C选项错误; D.由函数y=mx+m的图象可知m<...

已知二次函数的图象经过点(0,﹣3),且顶点坐标为(﹣1,﹣4).

(1)求该二次函数的解析式;

(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.

1.【解析】 (1)设,把点代入得:-----------2分 ∴函数解析式或-----------------------------2分 2.(2)∵,解得, ∴,,。---------(2分) ∴△ABC的面积=。--------------------------(2分) 【解析】试题分析:(1)先设所求函数解析式是y=a(x+1)2﹣4,再把(0,﹣3)代...

关于二次函数y=x2﹣2x﹣3的图象,下列说法中错误的是( )

A. 当x<2,y随x的增大而减小 B. 函数的对称轴是直线x=1

C. 函数的开口方向向上 D. 函数图象与y轴的交点坐标是(0,﹣3)

A 【解析】试题分析:∵y=x2﹣2x﹣3=(x﹣1)2﹣4, ∴抛物线开口向上,对称轴为x=1,当x<1时y随x的增大而减小,故B、C正确,A不正确, 令x=0可得y=﹣3, ∴抛物线与y轴的交点坐标为(0,﹣3),故D正确, 故选A.

如图,AC是□ABCD的一条对角线,BM⊥AC, DN⊥AC,垂足分别为M,N,四边形BMDN是平行四边形吗?请选择一种你认为比较好的方法证明.

答案见解析 【解析】试题分析:由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,又由BM⊥AC,DN⊥AC,即可得BM∥DN,∠DNA=∠BMC=90°,然后利用AAS证得△ADN≌△CBM,即可得DN=BM,由有一组对边相等且平行的四边形是平行四边形,即可证得四边形BMDN是平行四边形. 试题解析:【解析】 四边形BMDN是平行四边形.理由如下: ∵四边形ABCD是平...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网