如图,等边三角形ABD和等边三角形CBD的边长均为a,现把它们拼合起来,E是AD上异于A、D两点的一动点,F是CD上一动点,满足AE+CF=a.则△BEF的形状如何?

△BEF为正三角形,理由见解析 【解析】试题分析:根据已知条件易证△BDE≌△BCF,即可求得∠FBD+∠DBE=60°,根据一个内角为60°的等腰三角形可以判定为等边三角形,即可得结论. 试题解析: △BEF为正三角形 证明:∵AE+CF=a,AE+ED=a, ∴DE=CF, 在△BDE和△BCF中, ∴△BDE≌△BCF, ∴BE=BF,∠CBF...

二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过(  )

A. 第一、二、三象限 B. 第一、二、四象限

C. 第二、三、四象限 D. 第一、三、四象限

C 【解析】试题分析:根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限. 故选C.

函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是(  )

A. B. C. D.

B 【解析】A选项中,若反比例函数如图,则,那么抛物线应与y轴交于负半轴,所以A不可能; B选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以B可能; C选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以C不可能; D选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以D不可能; 故选B. ...

关于二次函数y=x2﹣2x﹣3的图象,下列说法中错误的是( )

A. 当x<2,y随x的增大而减小 B. 函数的对称轴是直线x=1

C. 函数的开口方向向上 D. 函数图象与y轴的交点坐标是(0,﹣3)

A 【解析】试题分析:∵y=x2﹣2x﹣3=(x﹣1)2﹣4, ∴抛物线开口向上,对称轴为x=1,当x<1时y随x的增大而减小,故B、C正确,A不正确, 令x=0可得y=﹣3, ∴抛物线与y轴的交点坐标为(0,﹣3),故D正确, 故选A.

如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为(  )

A. B. C. D.

B 【解析】试题分析:∵a<0, ∴抛物线的开口方向向下, 故第三个选项错误; ∵c<0, ∴抛物线与y轴的交点为在y轴的负半轴上, 故第一个选项错误; ∵a<0、b>0,对称轴为x=>0, ∴对称轴在y轴右侧, 故第四个选项错误. 故选B.

如图所示是二次函数y=ax2﹣x+a2﹣1的图象,则a的值是( )

A. a=﹣1 B. a= C. a=1 D. a=1或a=﹣1

C 【解析】由图象得,此二次函数过原点(0,0), 把点(0,0)代入函数解析式得a2-1=0,解得a=±1; 又因为此二次函数的开口向上,所以a>0; 所以a=1. 故选C.

抛物线y=x2﹣2x﹣3的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=x2+bx+c,则b、c的值为( )

A.b=2,c=2 B.b=2,c=﹣1 C.b=﹣2,c=﹣1 D.b=﹣3,c=2

B. 【解析】 试题分析:y=x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4, 图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=(x﹣1+2)2﹣4+2=(x+1)2﹣2=x2+2x﹣1, 则b=2,c=﹣1, 故选B.

根据下列表格对应值:

x

3

4

5

y=ax2+bx+c

0.5

﹣0.5

﹣1

判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是(  )

A. x<3 B. x>5 C. 3<x<4 D. 4<x<5

C 【解析】试题分析:∵x=3时,y=0.5,即ax2+bx+c>0; x=4时,y=﹣0.5,即ax2+bx+c<0, ∴抛物线与x轴的一个交点在(3,0)和(4,0)之间, ∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3<x<4. 故选C.

如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是抛物线上两点,则y1<y2,其中说法正确的是(  )

A. ①② B. ②③ C. ①②④ D. ②③④

A 【解析】∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确; ∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确; ∵x=2时,y>0,∴4a+2b+c>0,所以③错误; ∵点(﹣5,y1)离对称轴的距离与点(3,y2)离对称轴的距离相等,∴y1=y2,所以④不正确. 故选:A.

如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是(  )

A. -1<x<5 B. x>5 C. x<-1且x>5 D. x<-1或x>5

D 【解析】由图可知,抛物线的对称轴为直线x=2,与x轴的一个交点坐标为(5,0), ∴函数图象与x轴的另一交点坐标为(-1,0), ∴ax2+bx+c<0的解集是x<-1或x>5. 故选C.
 0  322151  322159  322165  322169  322175  322177  322181  322187  322189  322195  322201  322205  322207  322211  322217  322219  322225  322229  322231  322235  322237  322241  322243  322245  322246  322247  322249  322250  322251  322253  322255  322259  322261  322265  322267  322271  322277  322279  322285  322289  322291  322295  322301  322307  322309  322315  322319  322321  322327  322331  322337  322345  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网