题目内容

关于二次函数y=x2﹣2x﹣3的图象,下列说法中错误的是( )

A. 当x<2,y随x的增大而减小 B. 函数的对称轴是直线x=1

C. 函数的开口方向向上 D. 函数图象与y轴的交点坐标是(0,﹣3)

A 【解析】试题分析:∵y=x2﹣2x﹣3=(x﹣1)2﹣4, ∴抛物线开口向上,对称轴为x=1,当x<1时y随x的增大而减小,故B、C正确,A不正确, 令x=0可得y=﹣3, ∴抛物线与y轴的交点坐标为(0,﹣3),故D正确, 故选A.
练习册系列答案
相关题目

袋中有5个红球,6个白球,12个黑球,每个球除颜色外都相同,事先选定一种颜色,若摸到的球的颜色与事先选定的一样,则获胜,否则就失败,为了尽可能获胜,你事先应选择的颜色是__.

黑色 【解析】先分别求出摸到红球,白球,黑球的概率,再比较它们的大小,概率最大的即为所求. 【解析】 ∵袋中有5个红球,6个白球,12个黑球, ∴袋中一共有球:5+6+12=23(个), ∴摸到红球的概率为: , 摸到白球的概率为: , 摸到黑球的概率为: , 又∵<<, ∴摸到黑球的概率最大,会尽可能获胜. 故答案为黑球.

在平面直角坐标系中,线段OP的两个端点坐标分别为O(0,0),P(4, 3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标是( )

A.(3,4) B.(-4,3) C.(-3,4) D.(4,-3)

C. 【解析】 试题分析:如图,OA=3,PA=4, 把线段OP绕点O逆时针旋转90°到OP′位置可得OA旋转到x轴负半轴OA′的位置,OB旋转到y轴正半轴OB′的位置,所以P′A′=PA=4,P′B′=PB=3,即可得P′点的坐标为(﹣3,4).故答案选C.

二次函数y=x2+bx+c的图象经过点(4,3),(3,0).

(1)求b、c的值;

(2)求该二次函数图象的顶点坐标和对称轴.

(1) ;(2)顶点坐标为(2,﹣1),对称轴为直线x=2 【解析】试题分析:(1)把已知点的坐标代入解析式,然后解关于b、c的二元一次方程组即可得解;(2)把函数解析式转化为顶点式形式,然后即可写出顶点坐标与对称轴解析式. 试题解析:(1)∵二次函数y=x2+bx+c的图象经过点(4,3),(3,0), ∴ , 解得 ; (2)∵该二次函数为y=x2﹣4x+3=(x...

如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是抛物线上两点,则y1<y2,其中说法正确的是(  )

A. ①② B. ②③ C. ①②④ D. ②③④

A 【解析】∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确; ∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确; ∵x=2时,y>0,∴4a+2b+c>0,所以③错误; ∵点(﹣5,y1)离对称轴的距离与点(3,y2)离对称轴的距离相等,∴y1=y2,所以④不正确. 故选:A.

如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,探索α与∠B的关系。

∠α=∠B,理由见解析 【解析】试题分析:根据已知条件易证△BFD≌△CDE,得出∠BFD=∠CDE,再由角之间的转化,进而可得出结论. 【解析过程】 试题解析: ∠α=∠B,理由为: 证明:∵AB=AC(已知), ∴∠B=∠C(等边对等角), 在△BDF和△CED中, ∴△BDF≌△CED(SAS), ∴∠BFD=∠CDE(全等三角形对应角相...

若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为(  )

A. 9 B. 12 C. 9或12 D. 10

B 【解析】由于等腰三角形的底边不确定,所以需要分类讨论, ①当底边长为2时,三边长为2,5,5,则周长为2+5+5=12; ②当底边长为5时,三边长为5,2,2,但5>2+2,不能构成三角形. 故选B.

如图所示的抛物线是二次函数y=+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有( ).

A.1个 B.2个 C.3个 D.4个

C. 【解析】 试题分析:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x==1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0, 即a﹣b+c<0,∴a+c<b,所以④错误. 故选:C...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网