题目内容

根据下列表格对应值:

x

3

4

5

y=ax2+bx+c

0.5

﹣0.5

﹣1

判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是(  )

A. x<3 B. x>5 C. 3<x<4 D. 4<x<5

C 【解析】试题分析:∵x=3时,y=0.5,即ax2+bx+c>0; x=4时,y=﹣0.5,即ax2+bx+c<0, ∴抛物线与x轴的一个交点在(3,0)和(4,0)之间, ∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3<x<4. 故选C.
练习册系列答案
相关题目

从10名学生(6男4女,其中小芳为女生)中,抽选6人参加“防震知识”竞赛.若规定男生选3人,则“选到小芳”的事件应该是____(选填“必然事件、不可能事件、随机事件”).

随机事件 【解析】根据事件发生的可能性大小判断相应事件的类型即可. 解答:【解析】 “随机事件是指在一定条件下,可能发生也可能不发生的事件”, 从10名学生(6男4女,其中小芳为女生)中,抽选6人参加“防震知识”竞赛. 若规定男生选3人,则女生也选3人,“选到小芳”的可能性大,但不一定发生. 故答案为:随机事件.

线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是__.

平行且相等 【解析】【解析】 ∵线段AB沿和它垂直的方向平移到A′B′,∴线段AB和线段A′B′的位置关系是平行且相等.故答案为:平行且相等.

已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x元(x为整数),每星期的销售利润为w元.

(1)求w与x之间的函数关系式,并写出自变量x的取值范围;

(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元?

(3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果.

(1)w=﹣20x2+100x+6000,x≤4,且x为整数;(2)售价不低于56元且不高于60元时,每星期利润不低于6000元. 【解析】试题分析:(1)根据利润=(售价﹣进价)×销售件数即可求得W与x之间的函数关系式; (2)利用配方法求得函数的最大值,从而可求得答案; (3)根据每星期的销售利润不低于6000元列不等式求解即可. 试题解析: (1)w=(20﹣x)(3...

抛物线y=x2﹣5x+6与x轴交于A、B两点,则AB的长为__.

1 【解析】试题分析:当y=0,则0=x2﹣5x+6, 解得:x1=2,x2=3, 故AB的长为:3﹣2=1.

函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是(  )

A. B. C. D.

B 【解析】A选项中,若反比例函数如图,则,那么抛物线应与y轴交于负半轴,所以A不可能; B选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以B可能; C选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以C不可能; D选项中,若反比例函数如图,则,那抛物线开口应该向下,且与y轴交于正半轴,所以D不可能; 故选B. ...

如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O

(1)连接OA,求∠OAC的度数;

(2)求:∠BOC。

(1) 40°;(2) 130° 【解析】试题分析:(1)连接AO,利用等腰三角形的对称性即可求得∠OAC的度数;(2)利用三角形的内角和定理以及角平分线的定义求∠BOC与∠A的关系,再把∠A代入即可求∠BOC的度数. 试题解析: (1)连接AO, ∵在等腰△ABC中,∠B和∠C的平分线相交于点O, ∴等腰△ABC关于线段AO所在的直线对称, ∵∠A=80°, ...

如图,∠A=∠D,AC=DF,那么需要补充一个直接条件________(写出一个即可),才能使△ABC≌△DEF.

AB=DE(或∠B=∠E或∠C=∠F) 【解析】添加条件AB=DE, 在△ABC和△DEF中, , ∴△ABC≌△DEF(SAS); 或添加条件∠B=∠E, 在△ABC和△DEF中, , ∴△ABC≌△DEF(AAS); 或添加条件∠C=∠F, 在△ABC和△DEF中, , ∴△ABC≌△DEF(ASA); 故答案为:AB=DE(或...

已知抛物线的解析式为y=(x-2)2+1,则这条抛物线的顶点坐标是( ).

A. (﹣2,1) B. (2,1) C. (2,﹣1) D. (1,2)

B 【解析】根据顶点式y=(x-h)2+k的顶点为(h,k),由y=(x-2)2+1为抛物线的顶点式,顶点坐标为(2,1). 故选:B.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网