问题提出:从A到B共有8个台阶,如果某同学在上台阶时,可以一步1个台阶,也可以一步2个台阶.那么该同学从A走到B共有多少种不同的走法?
问题探究:为解决上述实际问题,我们先建立如下数学模型:
用若干个边长都为1的正方形(记为1×1矩形)和若干个边长分别为1和2的矩形(记为1×2矩形),如图1,要拼成一个边长分别为1和n的矩形(记为1×n矩形),如图2,有多少种不同的拼法?(设A1×n表示不同拼法的个数)

为解决上述数学模型问题,我们采取的策略和方法是:一般问题特殊化.
探究一:先从最特殊的情形入手,即要拼成一个1×1矩形,有多少种不同拼法?
显然,只有1种拼法,如图3,即A1×1=1种.
探究二:要拼成一个1×2矩形,有多少种不同拼法?不难看出,有2种拼法,如图4,即A1×2=2种.
探究三:要拼成一个1×3矩形,有多少种不同拼法?拼图方法可分为两类:一类是在图4这2种1×2矩形
上方,各拼上一个1×1矩形,即这类拼法共有A1×2=2种;另一类是在图3这1种1×1矩形上方拼上一个1×2矩形,即这类拼法有A1×1=1种,如图5.即A1×3=A1×2+A1×1=2+1=3(种).
探究四:要拼成一个1×4矩形,有多少种不同拼法?拼图方法可分为两类:一类是在图5这3种1×3矩形上方,各拼上一个1×1矩形,即这类拼法共有A1×3=3种;另一类是在图4这2种1×2矩形上方,各拼上一个1×2矩形,即这类拼法共有A1×2=2种,如图6.即A1×4=A1×3+A1×2=3+2=5(种).
探究五:要拼成一个1×5矩形,有多少种不同拼法A1×5?仿照上述探究过程进行解答,并求出A1×5(不需画图).
探究六:一般的,要拼成一个1×n矩形(n≥3的整数),有A1×n=
 
 种不同拼法.(已知A1×(n-1)=a,A1×(n-2)=b,)
问题解决:把“问题提出”中的实际问题,转化为“问题探究”中的数学模型,并进行解答.
 0  257594  257602  257608  257612  257618  257620  257624  257630  257632  257638  257644  257648  257650  257654  257660  257662  257668  257672  257674  257678  257680  257684  257686  257688  257689  257690  257692  257693  257694  257696  257698  257702  257704  257708  257710  257714  257720  257722  257728  257732  257734  257738  257744  257750  257752  257758  257762  257764  257770  257774  257780  257788  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网