搜索
在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,DE∥BC,则图中等腰三角形的个数是( )
A、5
B、4
C、3
D、2
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于D、E两点,过点D作DE⊥AC,垂足为F.
(1)求证:DF是⊙O的切线;
(2)若AE=DE,求∠B的度数.
如图,AB是⊙O的直径,BE是弦,C是劣弧BE的中点,过C作CD⊥AB于D,CD交BE于点F,过C作CG∥BE交AB延长线于点G.
(1)求证:CG是⊙O的切线;
(2)求证:BF=CF;
(3)若∠EBA=30°,CF=2,求BG的长.
如图,某教学学习小组为了测量山顶上一古灯塔的高度CD,他们在山脚下的点A处测得塔顶C处的仰角为45°,沿着坡角为30°的登山梯AB向上走200米到达山顶B处后,测得塔顶C处的仰角为60°,已知点B与底部D在同一水平线上.
(1)求塔的底部D到地平面AE的距离;
(2)求灯塔CD的高度.
如图是由4个边长为1的正方形组成的图形,请求出∠ABC的度数.
如图,在Rt△ABC中,∠ABC=90°,CD⊥BC,BD与AC相交于点E,AB=9,BC=4,DC=3.
(1)求BE的长度;
(2)求△ABE的面积.
如图,在△ABC中,D、E分别是AB、AC的中点,若△ABC的面积为
S
△ABC
=36c
m
2
,则△ADE的面积S
△ADE
为( )
A、6
B、9
C、12
D、18
如图,在梯形ABCD中,AD∥BC,∠DCB=90°,点E是边AB的中点,联结DE,延长DE交CB的延长线于点F,∠CBA=2∠F,且AC=BC.
(1)求证:△FBE∽△EFC;
(2)求证:DC
2
=AD•FC.
如图,在⊙O中,弦AB=CD,AB⊥CD,垂足为P,OE⊥AB于E,OF⊥CD于F,
(1)试判断四边形OFPE的形状;
(2)连结OP,如果⊙O的半径为5cm,OP=3
2
cm.求AB的长.
如图,一艘渔船正由西向东追赶鱼群,在A处测得小岛C在船的北偏东60°方向,距离A处80千米,此时渔船接到通知,以小岛C为中心周围30海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向前追赶鱼群,是否有进入区域的可能?
0
248140
248148
248154
248158
248164
248166
248170
248176
248178
248184
248190
248194
248196
248200
248206
248208
248214
248218
248220
248224
248226
248230
248232
248234
248235
248236
248238
248239
248240
248242
248244
248248
248250
248254
248256
248260
248266
248268
248274
248278
248280
248284
248290
248296
248298
248304
248308
248310
248316
248320
248326
248334
366461
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案