题目内容
13.分析 首先利用勾股定理求出三角形的边长,然后得到三角形是等腰三角形,进而利用勾股定理求出AD的长即可.
解答
解:根据勾股定理可知:
AB=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,AC=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,BC=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
则△ABC是等腰三角形,
过点A作AD⊥BC,垂足为D,
即BD=CD=$\frac{1}{2}$BC=$\frac{\sqrt{2}}{2}$,
AD=$\sqrt{A{C}^{2}-C{D}^{2}}$=$\sqrt{(\sqrt{5})^{2}-(\frac{\sqrt{2}}{2})^{2}}$=$\frac{3\sqrt{2}}{2}$,
即点A到BC的距离为$\frac{3\sqrt{2}}{2}$,
故答案为$\frac{3\sqrt{2}}{2}$.
点评 本题主要考查了勾股定理的知识,解题的关键是利用勾股定理求出三角形的边长,此题难道不大.
练习册系列答案
相关题目
8.
如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向转转90°,得到点F,连接AF,则AF的最大值是( )
| A. | $\sqrt{13}$ | B. | $\sqrt{3}+2$ | C. | $\sqrt{5}+2$ | D. | $2\sqrt{2}+1$ |