ÌâÄ¿ÄÚÈÝ
3£®ÔĶÁÏÂÁвÄÁÏ£¬½â´ðÏÂÃæµÄÎÊÌ⣺ÎÒÃÇÖªµÀ·½³Ì2x+3y=12ÓÐÎÞÊý¸ö½â£¬µ«ÔÚʵ¼ÊÎÊÌâÖÐÍùÍùÖ»ÐèÇó³öÆäÕýÕûÊý½â£®
Àý£ºÓÉ2x+3y=12£¬µÃ£ºy=$\frac{12-2x}{3}$=4-$\frac{2}{3}$x£¨x¡¢yΪÕýÕûÊý£©£®ÒªÊ¹y=4-$\frac{2}{3}$xΪÕýÕûÊý£¬Ôò$\frac{2}{3}$xΪÕýÕûÊý£¬¿ÉÖª£ºxΪ3µÄ±¶Êý£¬´Ó¶øx=3£¬´úÈëy=4-$\frac{2}{3}$x=2£®ËùÒÔ2x+3y=12µÄÕýÕûÊý½âΪ$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$£®
ÎÊÌ⣺
£¨1£©ÇëÄãÖ±½Óд³ö·½³Ì3x+2y=8µÄÕýÕûÊý½â$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$£®
£¨2£©Èô$\frac{6}{x-3}$Ϊ×ÔÈ»Êý£¬ÔòÂú×ãÌõ¼þµÄÕýÕûÊýxµÄÖµÓÐB
A£®3¸ö B£®4¸ö C£®5¸ö D£®6¸ö
£¨3£©¹ØÓÚx£¬yµÄ¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{x+2y=9}\\{2x+ky=10}\end{array}\right.$µÄ½âÊÇÕýÕûÊý£¬ÇóÕûÊýkµÄÖµ£®
·ÖÎö £¨1£©¸ù¾Ý¶þÔªÒ»´Î·½³ÌµÄ½âµÃ¶¨ÒåÇó³ö¼´¿É£»
£¨2£©¸ù¾ÝÌâÒâµÃ³öx-3=6»ò3»ò2»ò1£¬Çó³ö¼´¿É£»
£¨3£©ÏÈÇó³öyµÄÖµ£¬¼´¿ÉÇó³ökµÄÖµ£®
½â´ð ½â£º£¨1£©·½³Ì3x+2y=8µÄÕýÕûÊý½âΪ$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$£¬
¹Ê´ð°¸Îª$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$£»
£¨2£©ÕýÕûÊýÓÐ9£¬6£¬5£¬4£¬¹²4¸ö£¬
¹ÊÑ¡B£»
£¨3£©$\left\{\begin{array}{l}{x+2y=9¢Ù}\\{2x+ky=10¢Ú}\end{array}\right.$
¢Ù¡Á2-¢ÚµÃ£º£¨4-k£©y=8£¬
½âµÃ£ºy=$\frac{8}{4-k}$£¬
¡ßx£¬yÊÇÕýÕûÊý£¬kÊÇÕûÊý£¬
4-k=1£¬2£¬4£¬8£¬
¡àk=3£¬2£¬0£¬-4£¬
µ«k=3ʱ£¬x²»ÊÇÕýÕûÊý£¬¹Êk=2£¬0£¬-4£®
µãÆÀ ±¾Ì⿼²éÁ˶þÔªÒ»´Î·½³Ì×éµÄ½â£¬¶þÔªÒ»´Î·½³ÌµÄ½âµÄÓ¦Óã¬ÄÜÁé»îÔËÓÃ֪ʶµãÇó³öÌØÊâ½âÊǽâ´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®¶¯Îïѧ¼Òͨ¹ý´óÁ¿µÄµ÷²é¹À¼Æ£¬Ä³ÖÖ¶¯Îï»îµ½20ËêµÄ¸ÅÂÊΪ0.8£¬»îµ½25ËêµÄ¸ÅÂÊΪ0.6£¬ÔòÏÖÄê20ËêµÄÕâÖÖ¶¯Îï»îµ½25ËêµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
| A£® | 0.8 | B£® | 0.75 | C£® | 0.6 | D£® | 0.48 |
14£®Èô£¨m+2£©x${\;}^{{m}^{2}-3}$-2m=1£¬ÊǹØÓÚxµÄÒ»ÔªÒ»´Î·½³Ì£¬Ôòm=£¨¡¡¡¡£©
| A£® | ¡À2 | B£® | 2 | C£® | -2 | D£® | 1 |
18£®¼ÆËã-3+|-5|µÄ½á¹ûÊÇ£¨¡¡¡¡£©
| A£® | -2 | B£® | 2 | C£® | -8 | D£® | 8 |