题目内容
如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),
B(4,0)与y轴交于点C.
(Ⅰ)求抛物线的解析式及其顶点D的坐标;
(Ⅱ)求△BCD的面积;
(Ⅲ)若直线CD交x轴与点E,过点B作x轴的垂线,交直线CD与点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).
![]()
如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-
(x-4)2+3,由此可知铅球推出的距离是___________.
![]()
某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x2,该型号飞机着陆后需滑行________m才能停下来.
如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD被纸板覆盖部分的面积为( )
![]()
A.
a2 B.
a2 C.
a2 D.
a
一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是( )
①对应线段平行
②对应线段相等
③图形的形状和大小都没有发生变化
④对应角相等.
A. ①②③ B. ②③④ C. ①②④ D. ①③④
如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).
![]()
(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.
如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是( )
![]()
A. -1<x<5 B. x>5 C. x<-1且x>5 D. x<-1或x>5
有下列命题说法:①锐角三角形中任何两个角的和大于90°;②等腰三角形一定是锐角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
下列各式中,能用平方差公式因式分解的是( )
A. x2+x B. x2+8x+16 C. x2+4 D. x2﹣1