题目内容

如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),

B(4,0)与y轴交于点C.

(Ⅰ)求抛物线的解析式及其顶点D的坐标;

(Ⅱ)求△BCD的面积;

(Ⅲ)若直线CD交x轴与点E,过点B作x轴的垂线,交直线CD与点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).

(Ⅰ)抛物线的解析式:y=﹣x2+2x+8=﹣(x﹣1)2+9,顶点D(1,9);(Ⅱ)6;(Ⅲ)72. 【解析】 试题分析:(Ⅰ)利用待定系数法求出抛物线的解析式,通过对解析式进行配方能得到顶点D的坐标; (Ⅱ)先求出直线BC解析式,进而用三角形的面积公式即可得出结论. (Ⅲ)首先确定直线CD的解析式以及点E,F的坐标,若抛物线向上平移,首先表示出平移后的函数解析式;当x...
练习册系列答案
相关题目

如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=- (x-4)2+3,由此可知铅球推出的距离是___________.

10 【解析】【解析】 在中,令y=0,得,解得:x1=10,x2=﹣2(舍去),即铅球推出的距离是10m.故答案为:10.

如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD被纸板覆盖部分的面积为(  )

A. a2 B. a2 C. a2 D. a

B 【解析】【解析】 扇形的半径交AD于E,交CD于F,连结OD,如图. ∵四边形ABCD为正方形,∴OD=OC,∠COD=90°,∠ODA=∠OCD=45°. ∵∠EOF=90°,即∠EOD+∠DOF=90°,∠DOF+∠COF=90°,∴∠EOD=∠FOC. 在△ODE和△OCF中,∵∠ODE=∠OCF,OD=OC,∠EOD=∠COF,∴△ODE≌△OCF,∴S△OD...

一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是(  )

①对应线段平行

②对应线段相等

③图形的形状和大小都没有发生变化

④对应角相等.

A. ①②③ B. ②③④ C. ①②④ D. ①③④

B 【解析】【解析】 ①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误; ②无论平移还是旋转,对应线段相等,故本小题正确; ③无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确; ④无论平移还是旋转,对应角相等,故本小题正确. 综上所述,说法正确的是②③④. 故选B.

如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).

(1)求二次函数的解析式;

(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.

(1)y=--4x P1(-2, 4),P2(-2+2,-4),P3(-2-2,-4) 【解析】试题分析:(1)把点A原点的坐标代入函数解析式,利用待定系数法求二次函数解析式解答; (2)根据三角形的面积公式求出点P到AO的距离,然后分点P在x轴的上方与下方两种情况解答即可. 试题解析:(1)由已知条件得, 解得, 所以,此二次函数的解析式为y=﹣x2﹣4x; ...

如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是(  )

A. -1<x<5 B. x>5 C. x<-1且x>5 D. x<-1或x>5

D 【解析】由图可知,抛物线的对称轴为直线x=2,与x轴的一个交点坐标为(5,0), ∴函数图象与x轴的另一交点坐标为(-1,0), ∴ax2+bx+c<0的解集是x<-1或x>5. 故选C.

有下列命题说法:①锐角三角形中任何两个角的和大于90°;②等腰三角形一定是锐角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有(  )

A. 2个 B. 3个 C. 4个 D. 5个

B 【解析】①中,必定正确.如果两个角的和不大于90°,则第三个内角将大于或等于90°,该三角形将不是锐角三角形;②中,这两个概念不能混淆,当等腰三角形的顶角是钝角时,该三角形是钝角三角形,故错误;③中,若等腰三角形有一个外角等于120°,则等腰三角形有一个内角等于60°,则这个三角形一定是等边三角形,故正确;④中,此题应分为两种情况,底角可以是40°或70°,故错误;⑤中,显然正确,如果都...

下列各式中,能用平方差公式因式分解的是(   )

A. x2+x B. x2+8x+16 C. x2+4 D. x2﹣1

D 【解析】A. x²+x=x(x+1),是提取公因式法分解因式,故此选项错误; B. x²+8x+16=(x+4)²,是公式法分解因式,故此选项错误; C. x²+4,无法分解因式,故此选项错误; D. x²?1=(x+1)(x?1),能用平方差公因式分解,故此选项正确。 故选:D.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网