题目内容

有下列命题说法:①锐角三角形中任何两个角的和大于90°;②等腰三角形一定是锐角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有(  )

A. 2个 B. 3个 C. 4个 D. 5个

B 【解析】①中,必定正确.如果两个角的和不大于90°,则第三个内角将大于或等于90°,该三角形将不是锐角三角形;②中,这两个概念不能混淆,当等腰三角形的顶角是钝角时,该三角形是钝角三角形,故错误;③中,若等腰三角形有一个外角等于120°,则等腰三角形有一个内角等于60°,则这个三角形一定是等边三角形,故正确;④中,此题应分为两种情况,底角可以是40°或70°,故错误;⑤中,显然正确,如果都...
练习册系列答案
相关题目

下列事件中,属于随机事件的是(  )

A. 通常水加热到100℃时沸腾

B. 测量孝感某天的最低气温,结果为﹣150℃

C. 一个袋中装有5个黑球,从中摸出一个是黑球

D. 篮球队员在罚球线上投篮一次,未投中

D 【解析】试题解析:结合所学的随机事件与必然事件的意义,A必然发生,是必然事件;B一定不会发生,是必然事件;C一定会发生,是必然事件;D 罚球投篮一次未投中是可能发生的,属于随机事件.故选D.

如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),

B(4,0)与y轴交于点C.

(Ⅰ)求抛物线的解析式及其顶点D的坐标;

(Ⅱ)求△BCD的面积;

(Ⅲ)若直线CD交x轴与点E,过点B作x轴的垂线,交直线CD与点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).

(Ⅰ)抛物线的解析式:y=﹣x2+2x+8=﹣(x﹣1)2+9,顶点D(1,9);(Ⅱ)6;(Ⅲ)72. 【解析】 试题分析:(Ⅰ)利用待定系数法求出抛物线的解析式,通过对解析式进行配方能得到顶点D的坐标; (Ⅱ)先求出直线BC解析式,进而用三角形的面积公式即可得出结论. (Ⅲ)首先确定直线CD的解析式以及点E,F的坐标,若抛物线向上平移,首先表示出平移后的函数解析式;当x...

如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为(  )

A. B. C. D.

B 【解析】试题分析:∵a<0, ∴抛物线的开口方向向下, 故第三个选项错误; ∵c<0, ∴抛物线与y轴的交点为在y轴的负半轴上, 故第一个选项错误; ∵a<0、b>0,对称轴为x=>0, ∴对称轴在y轴右侧, 故第四个选项错误. 故选B.

如图,已知△ABC中,AB=AC,周长为24,AC边上的中线BD把△ABC分成周长差为6的两个三角形,则△ABC各边的长分别为多少?

三角形的各边长为10、10、4 【解析】试题分析:分AB>BC和AB<BC两种情况求得AB、BC的长,再由三角形的三边关系进行取舍即可. 试题解析: 根据题意结合图形,分成两部分的周长的差等于腰长与底边的差, (1)若AB>BC,则AB-BC=6, 又因为2AB+BC=24, 联立方程组并求解得:AB=10,BC=4, 10、10、4三边能够组成三角形; ...

已知一直角边和这条直角边的对角,求作直角三角形(用尺规作图,不写作法,但要保留作图痕迹).

见解析 【解析】试题分析:根据题意写出已知和求作,然后再画出图形即可. 试题解析:已知:线段a和∠α,如下图(1). 求作:Rt△ABC,使BC=a,∠C=90?,∠A=∠α. 作法:(1)作∠α的余角∠β. (2)作∠MBN=∠β. (3)在射线BM上截取BC=a. (4)过点C作CA⊥BM,交BN于点A,如图(2). △ABC就是所求的直角三角形...

△ABC中,AB=5,BC=3,则中线BD的取值范围是_________.

1<BD<4 【解析】延长BD到E,使BD=DE,连接AE,如图: ∵BD是△ABC中线, ∴AD=DC, 在△BDC和△EDA中, ∵, ∴△BDC≌△EDA. ∴BC=AE=3, ∵在△ABE中,根据三角形的三边关系定理得:5+3>BE>5-3, ∴2<2BD<8, 即1<BD<4. 故答案为:1<BD<4.

已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.

18 【解析】试题分析:先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解. 【解析】 a3b+2a2b2+ab3 =ab(a2+2ab+b2) =ab(a+b)2, 将a+b=3,ab=2代入得,ab(a+b)2=2×32=18. 故代数式a3b+2a2b2+ab3的值是18.

在第一象限内作射线OC,与x轴的夹角为60°,在射线OC上取一点A,过点A作AH⊥x 轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P、O、Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是______.

【解析】试题解析:①如图1,当∠POQ=∠OAH=30°,若以P,O,Q为顶点的三角形与△AOH全等,那么A、P重合; ∵∠AOH=60°, ∴直线OA:y=x, 联立抛物线的解析式得: , 解得: 或, 故A(,3); ②当∠POQ=∠AOH=60°,此时△POQ≌△AOH, 易知∠POH=30°,则直线y=x,联立抛物线的解析式,得: , 解得:...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网