题目内容

下列各式中,能用平方差公式因式分解的是(   )

A. x2+x B. x2+8x+16 C. x2+4 D. x2﹣1

D 【解析】A. x²+x=x(x+1),是提取公因式法分解因式,故此选项错误; B. x²+8x+16=(x+4)²,是公式法分解因式,故此选项错误; C. x²+4,无法分解因式,故此选项错误; D. x²?1=(x+1)(x?1),能用平方差公因式分解,故此选项正确。 故选:D.
练习册系列答案
相关题目

如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),

B(4,0)与y轴交于点C.

(Ⅰ)求抛物线的解析式及其顶点D的坐标;

(Ⅱ)求△BCD的面积;

(Ⅲ)若直线CD交x轴与点E,过点B作x轴的垂线,交直线CD与点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).

(Ⅰ)抛物线的解析式:y=﹣x2+2x+8=﹣(x﹣1)2+9,顶点D(1,9);(Ⅱ)6;(Ⅲ)72. 【解析】 试题分析:(Ⅰ)利用待定系数法求出抛物线的解析式,通过对解析式进行配方能得到顶点D的坐标; (Ⅱ)先求出直线BC解析式,进而用三角形的面积公式即可得出结论. (Ⅲ)首先确定直线CD的解析式以及点E,F的坐标,若抛物线向上平移,首先表示出平移后的函数解析式;当x...

△ABC中,AB=5,BC=3,则中线BD的取值范围是_________.

1<BD<4 【解析】延长BD到E,使BD=DE,连接AE,如图: ∵BD是△ABC中线, ∴AD=DC, 在△BDC和△EDA中, ∵, ∴△BDC≌△EDA. ∴BC=AE=3, ∵在△ABE中,根据三角形的三边关系定理得:5+3>BE>5-3, ∴2<2BD<8, 即1<BD<4. 故答案为:1<BD<4.

已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.

18 【解析】试题分析:先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解. 【解析】 a3b+2a2b2+ab3 =ab(a2+2ab+b2) =ab(a+b)2, 将a+b=3,ab=2代入得,ab(a+b)2=2×32=18. 故代数式a3b+2a2b2+ab3的值是18.

分解因式:x2-4=_____.

(x+2) (x-2) 【解析】试题解析:x2-4=(x+2)(x-2).

已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5).

(1)求该二次函数的解析式;

(2)求该二次函数图象与坐标轴的交点坐标;

(1)二次函数的关系式是y=-(x+1)2+4;(2)交点坐标是(-3,0)、(1,0) 【解析】试题分析: (1)由题意可设二次函数解析式为,代入点B的坐标(2,-5)求出的值,即可得到二次函数的解析式; (2)在(1)中所求函数解析式中,由时,求得对应的函数值即可得到函数图象与轴的交点坐标;由可得一元二次方程,解方程即可求得二次函数的图象与轴的交点坐标. 试题解析: ...

如果函数y=(k-3)+kx+1是二次函数,那么k的值一定是

0. 【解析】试题解析:由题意得:k2-3k+2=2, 解得k=0或k=3; 又∵k-3≠0, ∴k≠3. ∴当k=0时,这个函数是二次函数.

在第一象限内作射线OC,与x轴的夹角为60°,在射线OC上取一点A,过点A作AH⊥x 轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P、O、Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是______.

【解析】试题解析:①如图1,当∠POQ=∠OAH=30°,若以P,O,Q为顶点的三角形与△AOH全等,那么A、P重合; ∵∠AOH=60°, ∴直线OA:y=x, 联立抛物线的解析式得: , 解得: 或, 故A(,3); ②当∠POQ=∠AOH=60°,此时△POQ≌△AOH, 易知∠POH=30°,则直线y=x,联立抛物线的解析式,得: , 解得:...

平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.

21cm 【解析】【解析】 ∵四边形ABCD是平行四边形,∴AB=CD,AD=BC. ∵平行四边形的周长等于56cm,∴AB+CD+AD+BC=56cm,∴AB+BC=28cm. ∵BC:AB=3:1,∴BC=21cm,AB=7cm,∴这个平行四边形较长的边长为21cm. 故答案为:21cm.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网