题目内容

如图,教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=- (x-4)2+3,由此可知铅球推出的距离是___________.

10 【解析】【解析】 在中,令y=0,得,解得:x1=10,x2=﹣2(舍去),即铅球推出的距离是10m.故答案为:10.
练习册系列答案
相关题目

如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=___.

3. 【解析】试题分析:连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,又CD=BD,可得MN=CD,又由MN∥BC,可得四边形DCMN是平行四边形,所以DN=CM,根据直角三角形的性质得到CM=AB=3,即可得DN=3.

如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是( )

A.5 B.7 C.8 D.10

D. 【解析】 试题分析:∵AB=4,BC=6,DE、DF是△ABC的中位线,∴DE=AB=2,DF=BC=3,DE∥BF,DF∥BE,∴四边形BEDF为平行四边形,∴四边形BEDF的周长为:2×2+3×2=10,故选D.

在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象是(  )

A. A B. B C. C D. D

C 【解析】解:A.由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误; B.由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B错误; C.由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故C正确;...

抛物线y=x2+bx+c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C.

(1)求该抛物线的解析式;

(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;

(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

(1).(2)点A/的坐标为(﹣3,4).点A/在该抛物线上.(3)点P运动到时,四边形PACM是平行四边形. 【解析】试题分析:(1)将点A、B的坐标代入抛物线的解析式,得到关于b、c的二元一次方程组,从而可解得b、c的值; (2)过点B′作B′E⊥x轴于E,BB′与OC交于点F.由平行于y轴的直线上各点横坐标相同可知点C的横坐标为2,将x=2代入直线y=﹣2x的解析式可求得点C的坐...

如图,正方形ABCD中,AB=8cm,对角线AC、BD相交于点O,点E、F分别从B、C两点同时出发,以1cm/s的速度沿BC、CD运动,到点C、D时停止运动,设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )

A. A B. B C. C D. D

B 【解析】试题分析:由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)t,然后配方得到S=(t﹣4)2+8(...

从1,2,3,4,5这五个数中任意取两个相乘,问:

(1)积为偶数,属于哪类事件?有几种可能情况?

(2)积为奇数,属于哪类事件?有几种可能情况?

(3)积为无理数,属于哪类事件?

(1)可能事件,7;(2)可能事件,3;(3)不可能事件 【解析】试题分析:(1),(2)由于五个数中任意取两数相乘有奇数有偶数,所以(1)(2)都为不确定事件,分别写出乘积为偶数与为奇数的情况,即可看出分别有几种情况. (3)由于五个数都是有理数,他们的乘积也一定为有理数,不可能为无理数,所以(3)为不可能事件. 试题解析: 取任意两个数相乘,可能的结果如下表所示(重复的不留在表中...

下列事件中,属于随机事件的是(  )

A. 通常水加热到100℃时沸腾

B. 测量孝感某天的最低气温,结果为﹣150℃

C. 一个袋中装有5个黑球,从中摸出一个是黑球

D. 篮球队员在罚球线上投篮一次,未投中

D 【解析】试题解析:结合所学的随机事件与必然事件的意义,A必然发生,是必然事件;B一定不会发生,是必然事件;C一定会发生,是必然事件;D 罚球投篮一次未投中是可能发生的,属于随机事件.故选D.

如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),

B(4,0)与y轴交于点C.

(Ⅰ)求抛物线的解析式及其顶点D的坐标;

(Ⅱ)求△BCD的面积;

(Ⅲ)若直线CD交x轴与点E,过点B作x轴的垂线,交直线CD与点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).

(Ⅰ)抛物线的解析式:y=﹣x2+2x+8=﹣(x﹣1)2+9,顶点D(1,9);(Ⅱ)6;(Ⅲ)72. 【解析】 试题分析:(Ⅰ)利用待定系数法求出抛物线的解析式,通过对解析式进行配方能得到顶点D的坐标; (Ⅱ)先求出直线BC解析式,进而用三角形的面积公式即可得出结论. (Ⅲ)首先确定直线CD的解析式以及点E,F的坐标,若抛物线向上平移,首先表示出平移后的函数解析式;当x...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网