题目内容

一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是(  )

①对应线段平行

②对应线段相等

③图形的形状和大小都没有发生变化

④对应角相等.

A. ①②③ B. ②③④ C. ①②④ D. ①③④

B 【解析】【解析】 ①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误; ②无论平移还是旋转,对应线段相等,故本小题正确; ③无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确; ④无论平移还是旋转,对应角相等,故本小题正确. 综上所述,说法正确的是②③④. 故选B.
练习册系列答案
相关题目

抛物线y=x2+bx+c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C.

(1)求该抛物线的解析式;

(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;

(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

(1).(2)点A/的坐标为(﹣3,4).点A/在该抛物线上.(3)点P运动到时,四边形PACM是平行四边形. 【解析】试题分析:(1)将点A、B的坐标代入抛物线的解析式,得到关于b、c的二元一次方程组,从而可解得b、c的值; (2)过点B′作B′E⊥x轴于E,BB′与OC交于点F.由平行于y轴的直线上各点横坐标相同可知点C的横坐标为2,将x=2代入直线y=﹣2x的解析式可求得点C的坐...

如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同,正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),小孔顶点N距水面4.5m(即NC=4.5m),当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF.

水面宽度为10m 【解析】试题分析:设大孔抛物线的解析式为一般式形式,把点A(-10,0)代入解析式解得a=,因此函数解析式为,再由NC=4.5,可知点E,F的纵坐标,代入解析式即可求出点E,F的横坐标,继而可以求出EF. 试题解析:设抛物线的解析式为y=ax2+6,依题意得:B(10,0), ∴a×102+6=0,解得a=-0.06,即y=-0.06x2+6, 当y=4....

如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=________度.

20° 【解析】试题分析:根据旋转图形可得∠B′AB=40°,AB=AB′,则∠B′BA=70°,根据∠BCB′=90°可得∠BB′C=90°-70°=20°.

如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=(  )

A. 30° B. 35° C. 40° D. 50°

C 【解析】∵CC′∥AB, ∴∠C′CA=∠CAB=70°. ∵△AB′C′是由△ABC绕点A旋转得到的, ∴AC′=AC,∠C′AB′=∠CAB, ∴∠AC′C=∠ACC′=70°,∠C′AB′-∠CAB′=∠CAB-∠CAB′,即∠CAC′=∠BAB′, ∴∠CAC′=180°-70°-70°=40°, ∴∠BAB′=40°. 故选C. ...

如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),

B(4,0)与y轴交于点C.

(Ⅰ)求抛物线的解析式及其顶点D的坐标;

(Ⅱ)求△BCD的面积;

(Ⅲ)若直线CD交x轴与点E,过点B作x轴的垂线,交直线CD与点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).

(Ⅰ)抛物线的解析式:y=﹣x2+2x+8=﹣(x﹣1)2+9,顶点D(1,9);(Ⅱ)6;(Ⅲ)72. 【解析】 试题分析:(Ⅰ)利用待定系数法求出抛物线的解析式,通过对解析式进行配方能得到顶点D的坐标; (Ⅱ)先求出直线BC解析式,进而用三角形的面积公式即可得出结论. (Ⅲ)首先确定直线CD的解析式以及点E,F的坐标,若抛物线向上平移,首先表示出平移后的函数解析式;当x...

如图,抛物线与x轴交于A、B两点,与y轴交于点C,点D为该抛物线的对称轴上一点,当点D到直线BC和到x轴的距离相等时,则点D的坐标为

或 【解析】试题分析:如图所示: ∵抛物线y=﹣(x+1)(x﹣3)与x轴交于A、B两点,与y轴交于点C, ∴当﹣(x+1)(x﹣3)=0时,x=﹣1,或x=3, 当x=0时,y=3, ∴A(﹣1,0),B(3,0),C(0,3),对称轴x=1, ∴BM=3﹣1=2, 当点D到直线BC和到x轴的距离相等时,点D在∠ABC或∠ABE的平分线上, ①点D...

如图,已知△ABC中,AB=AC,周长为24,AC边上的中线BD把△ABC分成周长差为6的两个三角形,则△ABC各边的长分别为多少?

三角形的各边长为10、10、4 【解析】试题分析:分AB>BC和AB<BC两种情况求得AB、BC的长,再由三角形的三边关系进行取舍即可. 试题解析: 根据题意结合图形,分成两部分的周长的差等于腰长与底边的差, (1)若AB>BC,则AB-BC=6, 又因为2AB+BC=24, 联立方程组并求解得:AB=10,BC=4, 10、10、4三边能够组成三角形; ...

分解因式:x2-4=_____.

(x+2) (x-2) 【解析】试题解析:x2-4=(x+2)(x-2).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网