题目内容

6.如图,已知四边形ABCD的对角线AC、BD相交于点O,OB=OD,BF=DE,AE∥CF.
(1)求证:△OAE≌△OCF;
(2)若OA=OD,猜想:四边形ABCD的形状,请证明你的结论.

分析 (1)由AE∥CF,得到两对内错角相等,再由OB=OD,BF=DE,得到OE=OF,利用AAS即可得证;
(2)若OA=OD,则四边形ABCD为矩形,理由为:由OA=OD,得到OB=OC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.

解答 (1)证明:∵AE∥CF,
∴∠AEO=∠CFO,∠EAO=∠FCO,
∵OB=OD,BF=DE,
∴OB-BF=OD-DE,
即OE=OF,
在△OAE和△OCF中,
$\left\{\begin{array}{l}{∠AEO=∠CFO}\\{∠EAO=∠FCO}\\{OE=OF}\end{array}\right.$,
∴△OAE≌△OCF(AAS);
(2)若OA=OD,则四边形ABCD是矩形,理由为:
证明:∵△OAE≌△OCF,
∴OA=OC,
∵OD=OA,
∴OA=OB=OC=OD,且BD=AC,
∴四边形ABCD为矩形.

点评 此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网