题目内容
15.解不等式组$\left\{\begin{array}{l}{11-2(x-3)≥3(x-1)}&{(1)}\\{x-2>\frac{1-2x}{3}}&{(2)}\end{array}\right.$并把它的解集在数轴上表示出来.分析 首先解每个不等式,然后把不等式的解集在数轴上表示出来,写出不等式组的解集.
解答 解:解(1)得x≤4,
解(2)得x>$\frac{7}{5}$.
,
则不等式组的解集是:$\frac{7}{5}$<x≤4.
点评 本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
练习册系列答案
相关题目
3.解方程:
(1)$\frac{2}{2x-1}+\frac{5}{1-2x}=1$
(2)$\frac{x-2}{x+2}-\frac{16}{{{x^2}-4}}=\frac{x+2}{x-2}$.
(1)$\frac{2}{2x-1}+\frac{5}{1-2x}=1$
(2)$\frac{x-2}{x+2}-\frac{16}{{{x^2}-4}}=\frac{x+2}{x-2}$.
10.下列图形中,是中心对称图形的是( )
| A. | B. | C. | D. |