题目内容

14.如图,在四边形ABCD中,已知AD∥BC,AB⊥BC,点E,F在边AB上,且∠AED=45°,∠BFC=60°,AE=2,EF=2-$\sqrt{3}$,FC=2$\sqrt{3}$.
(1)BC=3.
(2)求点D到BC的距离.
(3)求DC的长.

分析 (1)由AB⊥BC,FC=2$\sqrt{3}$°,∠BFC=60°,直接利用三角函数的知识求解即可求得答案;
(2)首先过点D作DG⊥BC于点G,由AD∥BC,AB⊥BC,可得DG=AB,继而求得答案;
(3)首先可得四边形ABGD是平行四边形,即可求得CG的长,然后由勾股定理求得答案.

解答 解:(1)∵AB⊥BC,
∴∠B=90°,
∵FC=2$\sqrt{3}$,∠BFC=60°,
∴BC=FC•sin60°=2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=3;
故答案为:3;

(2)过点D作DG⊥BC于点G,
∵AD∥BC,AB⊥BC,
∴DG=AB,DA⊥AB,
∵FC=2$\sqrt{3}$,∠BFC=60°,
∴BF=FC•cos60°=$\sqrt{3}$,
∴DC=AB=AE+EF+BF=2+2-$\sqrt{3}$+$\sqrt{3}$=4;

(3)∵DA⊥AB,∠AED=45°,
∴AD=AE=2,
∵DG⊥BC,AB⊥BC,
∴DG∥AB,
∵AD∥BC,
∴四边形ABGD是平行四边形,
∴BG=AD=2,
∴CG=BC-BG=3-2=1,
∴在Rt△DCG中,CD=$\sqrt{D{G}^{2}+C{G}^{2}}$=$\sqrt{17}$.

点评 此题考查了矩形的判定与性质、勾股定理以及三角函数等知识.注意证得四边形ABGD是平行四边形是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网