题目内容

2.如图,已知线段AB=8,以A为圆心,5为半径作⊙A,点C在⊙A上,过点C作CD∥AB交⊙A于点D(点D在点C右侧),连结BC、AD.
(1)若CD=6,求四边形ABCD的面积;
(2)设CD=x,BC=y,求y与x的函数关系式及自变量x的取值范围.

分析 (1)作AH⊥CD于H,如图,根据垂径定理得CH=DH=$\frac{1}{2}$CD=$\frac{1}{2}$×6=3,再利用勾股定理计算出AH=4,然后根据梯形的面积公式求解;
(2)作CP⊥AB于P,如图1,根据垂径定理得CH=DH=$\frac{1}{2}$x,易得AP=CH=$\frac{1}{2}$x,则BP=AB-AP=8-$\frac{1}{2}$x,在Rt△PAC中利用勾股定理得到CP2=25-$\frac{1}{4}$x2,在Rt△BPC中根据勾股定理得到y2=(8-$\frac{1}{2}$x)2+25-$\frac{1}{4}$x2=89-8x,然后利用算术平方根定义即可得到y与x的关系.

解答 解:过点A作AH⊥CD于H,如图,则CH=DH=$\frac{1}{2}$CD=$\frac{1}{2}$×6=3,
在Rt△AHD中,∵AD=5,DH=3,
∴AH=$\sqrt{A{D}^{2}-D{H}^{2}}$=4,
∴四边形ABCD的面积=$\frac{1}{2}$(CD+AB)•AH=$\frac{1}{2}$×(6+8)×4=28;

(2)作点C作CP⊥AB于P,如图,
∵AH⊥CD,CD=x,
∴CH=DH=$\frac{1}{2}$x,
∴AP=CH=$\frac{1}{2}$x,
∴BP=AB-AP=8-$\frac{1}{2}$x,
在Rt△PAC中,∵AC2=AP2+CP2
∴CP2=25-$\frac{1}{4}$x2
在Rt△BPC中,∵BC2=BP2+CP2
∴y2=(8-$\frac{1}{2}$x)2+25-$\frac{1}{4}$x2=89-8x,
∴y=$\sqrt{89-8x}$(0<x<10);

点评 本题考查了矩形的判定与性质、勾股定理和圆周角定理,关键是根据题意作出辅助线,运用勾股定理进行几何计算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网