题目内容
13.| A. | $\frac{π}{2}$-1 | B. | 2π-2 | C. | π+1 | D. | 2π-4 |
分析 如图,作辅助线;首先求出半圆O的面积,其次求出△ABP的面积;观察图形可以发现:阴影部分的面积=4(S半圆O-S△ABP),求出值,即可解决问题.
解答
解:如图,连接PA、PB、OP;
则S半圆O=$\frac{π•{1}^{2}}{2}$=$\frac{π}{2}$,S△ABP=$\frac{1}{2}$AB•OP=$\frac{1}{2}$×2×1=1,
由题意得:图中阴影部分的面积=4(S半圆O-S△ABP)
=4($\frac{π}{2}$-1)=2π-4,
故选D.
点评 该题主要考查了正方形的性质、圆的面积公式、三角形的面积公式等知识点及其应用问题;解题的关键是作辅助线,将阴影部分的面积转化为规则图形的面积和或差.
练习册系列答案
相关题目
1.
如图,直线y=-2x+8分别交x、y轴于点A、B,点C是线段OB上一点(不与点B重合),过点A、B、C作⊙H,恰好与x轴相切,则∠CAB的正弦值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{5}$ |
8.2016年是雾霾肆虐的一年,河南更是雾霾重灾区,为减少雾霾对人体的伤害,某企业计划购进一批防霾口罩免费发放给学生使用,现甲、乙两个口罩厂有相同的防霾口罩可供选择,其具体销售方案如下:
设购买防霾口罩x个,到两家口罩厂购买所需费用分别为y甲(元),y乙(元).
(1)该企业发现若从两厂分别购买防霾口罩各2500个共花费9750元,若从两厂分别购买防霾口罩各3000个共花费11600元,请求出m,n的值;
(2)分别求出y甲,y乙与x之间的函数关系式;
(3)如果你是该企业的负责人,你认为到哪家口罩厂购买防霾口罩才合算,为什么?
| 甲口罩厂 | |
| 购防霾口罩数量 | 销售单价 |
| 不超过1000个时 | 2元/个 |
| 超过1000个的部分 | m元/个 |
| 乙口罩厂 | |
| 购防霾口罩数量 | 销售单价 |
| 不超过2000个时 | 2元/个 |
| 超过2000个的部分 | n元/个 |
(1)该企业发现若从两厂分别购买防霾口罩各2500个共花费9750元,若从两厂分别购买防霾口罩各3000个共花费11600元,请求出m,n的值;
(2)分别求出y甲,y乙与x之间的函数关系式;
(3)如果你是该企业的负责人,你认为到哪家口罩厂购买防霾口罩才合算,为什么?
3.
某区八年级有3000名学生参加“爱我中华”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了部分学生的得分进行统计:
请你根据以上的信息,回答下列问题:
(1)a=0.05,b=40.
(2)在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数是18°;
(3)若将得分转化为等级,规定:50≤x<60评为D,60≤x<70评为C,70≤x<90评为B,90≤x<100评为A.这次全区八年级参加竞赛的学生约有1530人参赛成绩被评为“B”.
| 成绩x(分) | 频数 | 频率 |
| 50≤x<60 | 10 | a |
| 60≤x<70 | 16 | 0.08 |
| 70≤x<80 | b | 0.20 |
(1)a=0.05,b=40.
(2)在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数是18°;
(3)若将得分转化为等级,规定:50≤x<60评为D,60≤x<70评为C,70≤x<90评为B,90≤x<100评为A.这次全区八年级参加竞赛的学生约有1530人参赛成绩被评为“B”.