题目内容

11.下列关于x的方程中,一定有实数根的是(  )
A.$\sqrt{x-1}+4=0$B.x2+x+1=0C.$\sqrt{x}=-x$D.$\sqrt{x-2}+\sqrt{2-x}=-1$

分析 根据$\sqrt{a}$表示a的算术平方根,一定是非负数,以及一元二次方程根的判别式即可作出判断.

解答 解:A、$\sqrt{x-1}$≥0,4>0,则原式一定不成立,则方程没有实数根,选项错误;
B、a=1,b=1,c=1,则△=b2-4ac=1-4=-3<0,则方程无实数根,选项错误;
C、当x=0时,$\sqrt{x}$=-x一定成立,即方程有实数根0,选项正确;
D、$\sqrt{x-2}$≥0,$\sqrt{2-x}$≥0,则$\sqrt{x-2}$+$\sqrt{2-x}$=0,因而$\sqrt{x-2}$+$\sqrt{2-x}$=-1一定不成立,没有实数根,选项错误.
故选C.

点评 本题考查了算术平方根的定义以及一元二次方程根的判别式,理解任何非负数的算术平方根是非负数是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网