题目内容

3.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.

(1)如图(1)若∠BOD=35°,则∠AOC=145°;若∠AOC=135°,则∠BOD=45°;
(2)如图(2)若∠AOC=140°,则∠BOD=40°;
(3)猜想∠AOC与∠BOD的大小关系,并结合图(1)说明理由.
(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.

分析 (1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;
(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;
(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;
(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.

解答 解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,
∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-35°=145°,
若∠AOC=135°,
则∠BOD=∠AOB+∠COD-∠AOC=90°+90°-135°=45°;

(2)如图2,若∠AOC=140°,
则∠BOD=360°-∠AOC-∠AOB-∠COD=40°;

(3)∠AOC与∠BOD互补.
∵∠AOD+∠BOD+∠BOD+∠BOC=180°.
∵∠AOD+∠BOD+∠BOC=∠AOC,
∴∠AOC+∠BOD=180°,
即∠AOC与∠BOD互补.

(4)OD⊥AB时,∠AOD=30°,
CD⊥OB时,∠AOD=45°,
CD⊥AB时,∠AOD=75°,
OC⊥AB时,∠AOD=60°,
即∠AOD角度所有可能的值为:30°、45°、60°、75°;
故答案为:(1)145°,45°;(2)40°.

点评 本题题主要考查了互补、互余的定义等知识,解决本题的关键是理解重叠的部分实质是两个角的重叠.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网