题目内容

10.△ABC中,AB=AC=1,∠BAC=45°,将△ABC绕点A按顺时针旋转α得到△AEF,连接BE,CF,它们交于D点,
①求证:BE=CF.
②当α=120°,求∠FCB的度数.
③当四边形ACDE是菱形时,求BD的长.

分析 ①先利用旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则根据“SAS”证明△AEB≌△AFC,于是得到BE=CF;
②利用∠FAC=120°,AF=AC可得到∠ACF=30°,再利用AB=AC,∠BAC=45°得到∠ACB=67.5°,然后计算∠BCF;
③利用四边形ACDE是菱形得到AC∥DE,DE=AE=AC=1,则∠ABE=∠BAC=45°,于是可判断△ABE为等腰直角三角形,所以BE=$\sqrt{2}$AB=$\sqrt{2}$,然后计算BE-DE即可.

解答 ①证明:∵△ABC绕点A按顺时针方向旋转角α得到△AEF,
∴AE=AB,AF=AC,∠EAF=∠BAC,
∴AB=AC=AE=AF,
∠EAF+∠FAB=∠BAC+∠FAB,即∠EAB=∠FAC,
在△AEB和△AFC中,
$\left\{\begin{array}{l}{AE=AF}\\{∠EAB=∠FAC}\\{AB=AC}\end{array}\right.$,
∴△AEB≌△AFC,
∴BE=CF;

②解:∵α=120°,
∴∠FAC=120°,
而AF=AC,
∴∠ACF=30°,
∵AB=AC,∠BAC=45°,
∴∠ACB=67.5°,
∴∠BCF=67.5°-30°=37.5°;

③解:∵四边形ACDE是菱形,
∴AC∥DE,DE=AE=AC=1,
∴∠ABE=∠BAC=45°,
而AE=AB,
∴△ABE为等腰直角三角形,
∴BE=$\sqrt{2}$AB=$\sqrt{2}$,
∴BD=BE-DE=$\sqrt{2}$-1.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网