题目内容

15.(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.
(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.

分析 (1)根据三角形内角和定理求出∠BAC,求出∠CAE,根据三角形内角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可;
(2)根据三角形内角和定理求出∠BAC,求出∠CAE,根据三角形内角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可.

解答 解:(1)∵∠B=40°,∠C=80°,
∴∠BAC=180°-∠B-∠C=60°,
∵AE平分∠BAC,
∴∠CAE=$\frac{1}{2}$∠BAC=30°,
∵AD⊥BC,
∴∠ADC=90°,
∵∠C=80°,
∴∠CAD=90°-∠C=10°,
∴∠EAD=∠CAE-∠CAD=30°-10°=20°;

(2)∵三角形的内角和等于180°,
∴∠BAC=180°-∠B-∠C,
∵AE平分∠BAC,
∴∠CAE=$\frac{1}{2}$∠BAC=$\frac{1}{2}$(180°-∠B-∠C),
∵AD⊥BC,
∴∠ADC=90°,
∴∠CAD=90°-∠C,
∴∠EAD=∠CAE-∠CAD=$\frac{1}{2}$(180°-∠B-∠C)-(90°-∠C)=$\frac{1}{2}$∠C-$\frac{1}{2}$∠B.

点评 本题考查了三角形内角和定理,角平分线性质的应用,解此题的关键是求出∠CAE和∠CAD的度数,题目比较典型,求解过程类似.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网