题目内容
15.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.
分析 (1)根据三角形内角和定理求出∠BAC,求出∠CAE,根据三角形内角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可;
(2)根据三角形内角和定理求出∠BAC,求出∠CAE,根据三角形内角和定理求出∠CAD,代入∠EAD=∠CAE-∠CAD求出即可.
解答 解:(1)∵∠B=40°,∠C=80°,
∴∠BAC=180°-∠B-∠C=60°,
∵AE平分∠BAC,
∴∠CAE=$\frac{1}{2}$∠BAC=30°,
∵AD⊥BC,
∴∠ADC=90°,
∵∠C=80°,
∴∠CAD=90°-∠C=10°,
∴∠EAD=∠CAE-∠CAD=30°-10°=20°;
(2)∵三角形的内角和等于180°,
∴∠BAC=180°-∠B-∠C,
∵AE平分∠BAC,
∴∠CAE=$\frac{1}{2}$∠BAC=$\frac{1}{2}$(180°-∠B-∠C),
∵AD⊥BC,
∴∠ADC=90°,
∴∠CAD=90°-∠C,
∴∠EAD=∠CAE-∠CAD=$\frac{1}{2}$(180°-∠B-∠C)-(90°-∠C)=$\frac{1}{2}$∠C-$\frac{1}{2}$∠B.
点评 本题考查了三角形内角和定理,角平分线性质的应用,解此题的关键是求出∠CAE和∠CAD的度数,题目比较典型,求解过程类似.
练习册系列答案
相关题目
7.今年“五一”小黄金周期间,我市旅游公司组织50名游客分散到A、B、C三个景点游玩.三个景点的门票价格如表所示:
所购买的50张票中,B种票张数是A种票张数的3倍还多1张,设需购A种票张数为x,C种票张数为y.
(1)写出y与x之间的函数关系式;
(2)设购买门票总费用为w(元),求出w与x之间的函数关系式;
(3)若每种票至少购买1张,且A种票不少于10张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.
| 景点 | A | B | C |
| 门票单价(元) | 30 | 55 | 75 |
(1)写出y与x之间的函数关系式;
(2)设购买门票总费用为w(元),求出w与x之间的函数关系式;
(3)若每种票至少购买1张,且A种票不少于10张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.
5.二元一次方程3x-y=1的解的情况是( )
| A. | 有且只有一个解 | B. | 有无数个解 | C. | 无解 | D. | 有且只有两个解 |