题目内容

5.如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2
(1)求证:△ABC≌△ADE;
(2)找出图中与∠1、∠2相等的角(直接写出结论,不需证明).

分析 (1)根据等式性质可以得出∠BAC=∠DAE,进而运用SAS判定△ABC≌△ADE;
(2)根据全等三角形的对应角相等,可以发现∠B=∠D,∠E=∠C,进而得出与∠1、∠2相等的角有∠MFD和∠NFC.

解答 解:(1)证明:∵∠1=∠2,
∴∠1+∠MAC=∠2+∠NAC,
∴∠BAC=∠DAE,
在△ABC和△ADE中,
$\left\{\begin{array}{l}{AB=AD}\\{∠BAC=∠DAE}\\{AC=AE}\end{array}\right.$,
∴△ABC≌△ADE(SAS);
(2)图中与∠1、∠2相等的角有∠MFD和∠NFC.

点评 本题主要考查了全等三角形的判定与性质,在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网