题目内容

如图,已知△ABC中,∠C=90°AD平分∠BAC,ED⊥BC交AB于E,DF∥AB交AC于F,求证:四边形AFDE是菱形.
考点:菱形的判定
专题:证明题
分析:首先判定该四边形是平行四边形,然后利用邻边相等的平行四边形是菱形判定菱形即可.
解答:证明:∵∠C=90°,ED⊥BC交AB于E,
∴DE∥AC,
∵DF∥AB,
∴四边形AEDF为平行四边形.
AD平分∠BAC,
∴∠EAD=∠FAD.
又∵AEDF为平行四边形,
∴∠FAD=∠ADE,
∴AE=ED,
∴四边形AEDF是菱形.
点评:此题考查了菱形的判定,熟记菱形的判定定理是解答本题的关键,本题应用了邻边相等的平行四边形是菱形判定.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网