ÌâÄ¿ÄÚÈÝ
9£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=6cm£¬BC=8cm£¬D¡¢E·Ö±ðÊÇAC¡¢ABµÄÖе㣬Á¬½ÓDE£®µãP´ÓµãD³ö·¢£¬ÑØDE·½ÏòÔÈËÙÔ˶¯£¬ËÙ¶ÈΪ1cm/s£»Í¬Ê±£¬µãQ´ÓµãB³ö·¢£¬ÑØBA·½ÏòÔÈËÙÔ˶¯£¬ËÙ¶ÈΪ2cm/s£¬µ±µãPÍ£Ö¹Ô˶¯Ê±£¬µãQҲֹͣÔ˶¯£®Á¬½ÓPQ£¬ÉèÔ˶¯Ê±¼äΪt£¨s£©£¨0£¼t£¼4£©£®¸ù¾ÝÉÏÃæµÄÐÅÏ¢£¬½â´ðÏÂÃæµÄÎÊÌ⣺£¨1£©µ±tΪºÎֵʱ£¬PQ¡ÍAB£¿
£¨2£©µ±µãQÔÚBEÖ®¼äÔ˶¯Ê±£¬ÉèÎå±ßÐÎPQBCDµÄÃæ»ýΪy£¨cm2£©£¬ÇóyÓëtÖ®¼äµÄº¯Êý±í´ïʽ£®
·ÖÎö £¨1£©Èçͼ¢ÙËùʾ£¬µ±PQ¡ÍABʱ£¬¡÷PQEÊÇÖ±½ÇÈý½ÇÐΣ®½â¾öÎÊÌâµÄÒªµãÊǽ«¡÷PQEµÄÈý±ß³¤PE¡¢QE¡¢PQÓÃʱ¼ät±íʾ£¬ÕâÐèÒªÀûÓÃÏàËÆÈý½ÇÐΣ¨¡÷PQE¡×¡÷ACB£©±ÈÀýÏ߶ιØÏµ£¨»òÈý½Çº¯Êý£©£»
£¨2£©±¾ÎʹؼüÊÇÀûÓõÈʽ¡°Îå±ßÐÎPQBCDµÄÃæ»ý=ËıßÐÎDCBEµÄÃæ»ý-¡÷PQEµÄÃæ»ý¡±£¬Èçͼ¢ÚËùʾ£®ÎªÇó¡÷PQEµÄÃæ»ý£¬ÐèÒªÇó³öQE±ßÉϵĸߣ¬Òò´Ë¹ýPµã×÷QE±ßÉϵĸߣ¬ÀûÓÃÏàËÆ¹ØÏµ£¨¡÷PME¡×¡÷ABC£©Çó³ö¸ßµÄ±í´ïʽ£¬´Ó¶øÎÊÌâ½â¾ö£»
½â´ð
½â£º£¨1£©Èçͼ¢Ù£¬ÔÚRt¡÷ABCÖУ¬
AC=6£¬BC=8
¡àAB=$\sqrt{{6}^{2}+{8}^{2}}$=10£®
¡ßD¡¢E·Ö±ðÊÇAC¡¢ABµÄÖе㣮
AD=DC=3£¬AE=EB=5£¬DE¡ÎBCÇÒ
DE=$\frac{1}{2}$BC=4
¡ßPQ¡ÍAB£¬
¡à¡ÏPQB=¡ÏC=90¡ã
ÓÖ¡ßDE¡ÎBC£¬
¡à¡ÏAED=¡ÏB£¬
¡à¡÷PQE¡×¡÷ACB£¬
$\frac{PE}{AB}$=$\frac{QE}{BC}$£¬ÓÉÌâÒâµÃ£ºPE=4-t£¬QE=2t-5£¬
¼´$\frac{4-t}{10}=\frac{2t-5}{8}$£¬
½âµÃt=$\frac{41}{14}$£»![]()
£¨2£©Èçͼ¢Ú£¬¹ýµãP×÷PM¡ÍABÓÚM£¬
ÓÉ¡÷PME¡×¡÷ACB£¬µÃ$\frac{PM}{AC}$=$\frac{PE}{AB}$£¬
¡à$\frac{PM}{6}$=$\frac{4-t}{10}$£¬µÃPM=$\frac{3}{5}$£¨4-t£©£®
S¡÷PQE=$\frac{1}{2}$EQ•PM=$\frac{1}{2}$£¨5-2t£©•$\frac{3}{5}$£¨4-t£©=$\frac{3}{5}$t2-$\frac{39}{10}$t+6£¬
SÌÝÐÎDCBE=$\frac{1}{2}$¡Á£¨4+8£©¡Á3=18£¬
¡ày=18-£¨$\frac{3}{5}$t2-$\frac{39}{10}$t+6£©=-$\frac{3}{5}$t2+$\frac{39}{10}$t+12£®
µãÆÀ ±¾ÌâÊǶ¯µãÐÍ×ÛºÏÌ⣬½âÌâ¹Ø¼üÊÇÕÆÎÕ¶¯µãÔ˶¯¹ý³ÌÖеÄͼÐÎÐÎ×´¡¢Í¼ÐÎÃæ»ýµÄ±íʾ·½·¨£®Ëù¿¼²éµÄ֪ʶµãÉæ¼°µ½¹´¹É¶¨Àí¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢Èý½ÇÐÎÖÐλÏß¶¨Àí¡¢½â·½³Ì£¨°üÀ¨Ò»ÔªÒ»´Î·½³ÌºÍÒ»Ôª¶þ´Î·½³Ì£©µÈ£¬ÓÐÒ»¶¨µÄÄѶȣ®×¢ÒâÌâÖÐÇóʱ¿ÌtµÄ·½·¨£º×îÖÕ¶¼ÊÇת»¯ÎªÒ»ÔªÒ»´Î·½³Ì»òÒ»Ôª¶þ´Î·½³ÌÇó½â£®
| A£® | $\frac{2}{3}$ | B£® | $\frac{3}{4}$ | C£® | $\frac{4}{5}$ | D£® | $\frac{7}{9}$ |