题目内容

5.不等式组$\left\{\begin{array}{l}{x<a+1}\\{x>2}\end{array}\right.$有3个整数解,则a的取值范围是(  )
A.5<a≤6B.4<a≤5C.4≤a<5D.5≤a<6

分析 首先解每个不等式,然后根据不等式组只有3个整数解,得到整数解,进而得到关于a的不等式,求得a的范围.

解答 解:$\left\{\begin{array}{l}{x<a+1①}\\{x>2②}\end{array}\right.$,
解不等式得:2<x<a+1,
不等式组有3个整数解,一定是3,4,5.
则5<a+1≤6
解得:4<a≤5.
故选B.

点评 本题考查了不等式组的整数解,先把题目中除未知数外的字母当做常数看待解不等式组,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网