题目内容
19.用代入法解下列方程组:(1)$\left\{\begin{array}{l}{y=1-x,①}\\{3x+2y=5,②}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x+5y=-21,①}\\{x+3y=8,②}\end{array}\right.$.
分析 (1)观察可知,直接将①代入②求出x,再将x代回①可得y;
(2)由②得x=8-3y,代入①求出y,将y的值代入x=8-3y求得x即可.
解答 解:(1)将①代入②,得:3x+2(1-x)=5,
解得:x=3,
将x=3代入①,得:y=1-3=-2,
所以方程组的解为:$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$;
(2)由②得:x=8-3y ③,
将③代入①,得:2(8-3y)+5y=-21,
解得:y=37,
将y=37代入③,得:x=8-3×37=-103,
所以方程组的解为:$\left\{\begin{array}{l}{x=-103}\\{y=37}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目