题目内容

9.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.
(1)求证:∠CBF=$\frac{1}{2}$∠CAB;
(2)连接BD,AE交于点H,若AB=5,tan∠CBF=$\frac{1}{2}$,求BH的值.

分析 (1)连接AE,利用等腰三角形的性质易证∠BAE=∠CAE=$\frac{1}{2}$∠CAB,由弦切角定理可得∠CBD=∠BAE,所以∠CBF=$\frac{1}{2}$∠CAB.
(2)由tan∠CBF=tan∠EAB=$\frac{1}{2}$,得出$\frac{BE}{AE}$=$\frac{1}{2}$,根据勾股定理求得BE,根据圆周角定理得出∠BAE=∠CAE,即可得出∠EBD=∠EAB,由∠EBD=∠EAB,得出tan∠EBD=$\frac{EH}{EB}$=$\frac{1}{2}$,即可求得EH,然后根据勾股定理求得BH即可.

解答 (1)证明:连接AE,
∵AB是圆的直径,
∴AE⊥BC,
∵AB=AC,
∴AE平分∠BAC,
∴∠BAE=∠CAE=$\frac{1}{2}$∠CAB,
∵BF是⊙O的切线,
∴∠CBF=∠BAE,
∴∠CBF=$\frac{1}{2}$∠CAB.
(2)解:∵tan∠CBF=tan∠EAB=$\frac{1}{2}$,
∴$\frac{BE}{AE}$=$\frac{1}{2}$,
∵AB=5,AB2=BE2+AE2
∴25=BE2+4BE2
∴BE=$\sqrt{5}$,
∵∠BAE=∠CAE,∠EBD=∠CAE,
∴∠EBD=∠EAB,
∴tan∠EBD=$\frac{EH}{EB}$=$\frac{1}{2}$,
∴EH=$\frac{\sqrt{5}}{2}$,
∴BH=$\sqrt{B{E}^{2}+E{H}^{2}}$=$\frac{5}{2}$.

点评 本题考查了弦切角定理的运用、圆周角定理,勾股定理,直角三角函数以及等腰三角形的性质,解题的关键是正确的添加辅助线,利用等腰三角形的性质解题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网