题目内容

18.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.
(1)求证:AF⊥BE;
(2)求证:AD=3DI.

分析 (1)根据翻折的性质和SAS证明△ABE与△ACF全等,利用全等三角形的性质得出∠AGB=90°证明即可;
(2)作IC的中点M,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可.

解答 证明:(1)∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,
∴AD=BD=CD,∠ACB=45°,
∵在△ADC中,AD=DC,DE⊥AC,
∴AE=CE,
∵△CDE沿直线BC翻折到△CDF,
∴△CDE≌△CDF,
∴CF=CE,∠DCF=∠ACB=45°,
∴CF=AE,∠ACF=∠DCF+∠ACB=90°,
在△ABE与△ACF中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠ACF}\\{AE=CF}\end{array}\right.$,
∴△ABE≌△ACF(SAS),
∴∠ABE=∠FAC,
∵∠BAG+∠CAF=90°,
∴∠BAG+∠ABE=90°,
∴∠AGB=90°,
∴AF⊥BE;
(2)作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°

∴四边形DECF是正方形,
∴EC∥DF,EC=DF,
∴∠EAH=∠HFD,AE=DF,
在△AEH与△FDH中$\left\{\begin{array}{l}{∠AHE=∠DHF}\\{∠EAH=∠HFD}\\{AE=DF}\end{array}\right.$,
∴△AEH≌△FDH(AAS),
∴EH=DH,
∵∠BAG+∠CAF=90°,
∴∠BAG+∠ABE=90°,
∴∠AGB=90°,
∴AF⊥BE,
∵M是IC的中点,E是AC的中点,
∴EM∥AI,
∴$\frac{DI}{TM}=\frac{DH}{HE}=1$,
∴DI=IM,
∴CD=DI+IM+MC=3DI,
∴AD=3DI.

点评 此题考查翻折问题,关键是利用SAS和AAS证明三角形全等,再利用全等三角形的性质进行分析解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网