ÌâÄ¿ÄÚÈÝ
13£®ÏÂÁÐÔ¼·Ö£º¢Ù$\frac{x}{3{x}^{2}}$=$\frac{1}{3x}$£»¢Ú$\frac{a+m}{b+m}$=$\frac{a}{b}$£»¢Û$\frac{2}{2+a}$=$\frac{1}{1+a}$£»¢Ü$\frac{2+xy}{xy+2}$=1£»¢Ý$\frac{{a}^{2}-1}{a+1}$=a-1£»¢Þ$\frac{-£¨x-y£©}{£¨x-y£©^{2}}$=-$\frac{1}{x-y}$£¬ÆäÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©| A£® | 2¸ö | B£® | 3¸ö | C£® | 4¸ö | D£® | 5¸ö |
·ÖÎö ¸ù¾Ý·ÖʽµÄ·Ö×Ó·Öĸ¶¼³ËÒÔ»ò³ýÒÔͬһ¸ö²»ÎªÁãµÄÕûʽ£¬·ÖʽµÄÖµ²»±ä£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º¢Ù$\frac{x}{3{x}^{2}}$=$\frac{1}{3x}$·Ö×Ó·Öĸ¶¼³ËÒÔx£¬¹Ê¢ÙÕýÈ·£»
¢Ú$\frac{a+m}{b+m}$=$\frac{a}{b}$·Ö×Ó·Öĸ¶¼¼õm£¬¹Ê¢Ú´íÎó£»
¢Û$\frac{2}{2+a}$=$\frac{1}{1+a}$·Ö×Ó·Öĸ¶¼¼õ1£¬¹Ê¢Û´íÎó£»
¢Ü$\frac{2+xy}{xy+2}$=1·Ö×Ó·Öĸ¶¼³ýÒÔ£¨xy+2£©£¬¹Ê¢ÜÕýÈ·£»
¢Ý$\frac{{a}^{2}-1}{a+1}$=a-1·Ö×Ó·Öĸ¶¼³ýÒÔ£¨a+1£©£¬¹Ê¢ÝÕýÈ·£»
¢Þ$\frac{-£¨x-y£©}{£¨x-y£©^{2}}$=-$\frac{1}{x-y}$·Ö×Ó·Öĸ¶¼³ýÒÔ£¨x-y£©£¬¹Ê¢ÞÕýÈ·£»
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁË·Öʽ»ù±¾ÐÔÖÊ£¬·ÖʽµÄ·Ö×Ó·Öĸ¶¼³ËÒÔ»ò³ýÒÔͬһ¸ö²»ÎªÁãµÄÕûʽ£¬·ÖʽµÄÖµ²»±ä£¬·Ö×¢ÒâʽµÄ·Ö×Ó·Öĸ¶¼¼Ó»ò¼õͬһ¸öÊý£¬·ÖʽµÄÖµ·¢Éú±ä»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®Ð¡Ã÷ΪÑо¿·´±ÈÀýº¯Êýy=$\frac{2}{x}$µÄͼÏó£¬ÔÚ-2¡¢-1¡¢1ÖÐÈÎÒâȡһ¸öÊýΪºá×ø±ê£¬ÔÚ-1¡¢2ÖÐÈÎÒâȡһ¸öÊýΪ×Ý×ø±ê×é³ÉµãPµÄ×ø±ê£¬µãPÔÚ·´±ÈÀýº¯Êýy=$\frac{2}{x}$µÄͼÏóÉϵĸÅÂÊÊÇ£¨¡¡¡¡£©
| A£® | $\frac{1}{6}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{2}{3}$ |