题目内容

2.如图,已知点A、B在双曲线y=$\frac{k}{x}$ (x>0)上,AC⊥x轴于C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.
(1)设A的横坐标为m,试用m、k表示B的坐标.
(2)试判断四边形ABCD的形状,并说明理由.
(3)若△ABP的面积为3,求该双曲线的解析式.

分析 (1)根据点P是AC的中点得到点A的横坐标是m,结合反比例函数图象上点的坐标特征来求点B的坐标;
(2)根据点P的坐标得到点P是BD的中点,所以由“对角线互相垂直平分的四边形是菱形”得到四边形ABCD是菱形;
(3)由△ABP的面积为3,知BP•AP=6.根据反比例函数 y=kx中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.

解答 解:(1)∵A的横坐标为m,AC⊥x轴于C,P是AC的中点,
∴点B的横坐标是2m.
又∵点B在双曲线y=$\frac{k}{x}$ (x>0)上,
∴B(2m,$\frac{k}{2m}$).

(2)连接AD、CD、BC;
∵AC⊥x轴于C,BD⊥y轴于点D,
∴AC⊥BD;
∵A(m,$\frac{k}{m}$),B(2m,$\frac{k}{2m}$),
∴P(m,$\frac{k}{2m}$),
∴PD=PB,
又AP=PC,
∴四边形ABCD是菱形;

(3)∵△ABP的面积为 $\frac{1}{2}$•BP•AP=3,
∴BP•AP=6,
∵P是AC的中点,
∴A点的纵坐标是B点纵坐标的2倍,
又∵点A、B都在双曲线y=$\frac{k}{x}$(x>0)上,
∴B点的横坐标是A点横坐标的2倍,
∴OC=DP=BP,
∴k=OC•AC=BP•2AP=12.
∴该双曲线的解析式是:y=$\frac{12}{x}$

点评 主要考查了反比例函数y=$\frac{k}{x}$中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网