题目内容

6.如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是(  )
A.①②④B.①③④C.②③④D.①②③

分析 根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.

解答 解:当∠ACP=∠B,∵∠A=∠A,
所以△APC∽△ACB;
当∠APC=∠ACB,∵∠A=∠A,
所以△APC∽△ACB;
当AC2=AP•AB,
即AC:AB=AP:AC,∵∠A=∠A
所以△APC∽△ACB;
当AB•CP=AP•CB,即$\frac{PC}{BC}=\frac{AP}{AB}$,
而∠PAC=∠CAB,
所以不能判断△APC和△ACB相似.
故选D.

点评 本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网