题目内容

设a,b,c,d都是整数,且a<2b,b<3c,c<4d,d<20,则a的最大值是( )

A. 480 B. 479 C. 448 D. 447

D 【解析】由a,b,c,d都是整数,且a<2b,b<3c,c<4d,d<20,可知d=19,c<4×19=76,代入可得c=75,b<3×75=225,再次代入b=224,a<2×224=448,因此可求出a=447, 故选:D.
练习册系列答案
相关题目

如图,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.求证:△ADE≌△BEC.

证明见解析 【解析】试题分析:由∠1=∠2,可得DE=CD,根据证明直角三角形全等的“HL”定理,证明即可. 试题解析:∵∠1=∠2, ∴DE=EC. 又∵∠A=∠B=90°,AE=BC, ∴Rt△ADE≌Rt△BEC(HL).

图形平移的主要因素是移动的________________

方向和距离 【解析】试题解析:图形的平移主要有两个方面决定即方向和距离. 故答案为:方向和距离.

将长度为5cm的线段向上平移10cm所得线段长度是(   )

A. 10cm B. 5cm C. 0cm D. 无法确定

B 【解析】平移不改变图形的大小和形状.故线段长度不变,仍为5cm.

已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是( )

A. a>1 B. a≤2 C. 1<a≤2 D. 1≤a≤2

C 【解析】根据x=2是不等式(x-5)(ax-3a+2)≤0的解,可知(2-5)(2a-3a+2)≤0,解得:a≤2,再根据x=1不是这个不等式的解,可得(1-5)(a-3a+2)>0,解得:a>1, 由此可得a的取值范围为:1<a≤2. 故选:C.

已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是( )

A. a>1 B. a≤2 C. 1<a≤2 D. 1≤a≤2

C 【解析】根据x=2是不等式(x-5)(ax-3a+2)≤0的解,可知(2-5)(2a-3a+2)≤0,解得:a≤2,再根据x=1不是这个不等式的解,可得(1-5)(a-3a+2)>0,解得:a>1, 由此可得a的取值范围为:1<a≤2. 故选:C.

19992+1999能被2000整除吗?

能 【解析】试题分析:根据提公因式法--因式分解,化为几个因数积的形式,而得到整除的结论. 试题解析:因为19992+1999=1999×(1999+1)=1999×2000, 所以19992+1999能被1999整除,也能被2000整除.

如果多项式能用公式法分解因式,那么k的值是(  )

A. 3 B. 6 C. D.

D 【解析】由于可以利用公式法分解因式,所以它是一个完全平方式,所以. 故选:D.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网