题目内容

2.已知$\left\{{\begin{array}{l}{{x_1}=3}\\{{y_1}=-2}\end{array}}\right.$是方程组$\left\{{\begin{array}{l}{{x^2}+{y^2}=m}\\{x+y=n}\end{array}}\right.$的一组解,那么此方程组的另一组解是$\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=3}\end{array}\right.$.

分析 先将$\left\{{\begin{array}{l}{{x_1}=3}\\{{y_1}=-2}\end{array}}\right.$代入方程组$\left\{{\begin{array}{l}{{x^2}+{y^2}=m}\\{x+y=n}\end{array}}\right.$中求出m、n的值,然后再求方程组的另一组解.

解答 解:将$\left\{{\begin{array}{l}{{x_1}=3}\\{{y_1}=-2}\end{array}}\right.$代入方程组$\left\{{\begin{array}{l}{{x^2}+{y^2}=m}\\{x+y=n}\end{array}}\right.$中得:$\left\{\begin{array}{l}{9+4=m}\\{3-2=n}\end{array}\right.$,
解得:m=13,n=1,
则方程组变形为:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=13}\\{x+y=1}\end{array}\right.$,
由x+y=1得:x=1-y,
将x=1-y代入方程x2+y2=13中可得:y2-y-6=0,
解得y=3或y=-2,
将y=3代入x+y=1中可得:x=-2,
所以方程的另一组解为:$\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=3}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{{x}_{2}=-2}\\{{y}_{2}=3}\end{array}\right.$.

点评 本题考查了高次方程,二元一次方程组的解法,熟记解二元一次方程的解法是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网