ÌâÄ¿ÄÚÈÝ
14£®| A£® | ¢Ù¢Û | B£® | ¢Ù¢Ú¢Ü | C£® | ¢Ù¢Û¢Ü | D£® | ¢Ù¢Ú¢Û¢Ü |
·ÖÎö ¸ù¾Ý·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄͼÏóµÃ³ö½»µã×ø±ê£¬ÔÙ½øÐзÖÎöÅжϼ´¿É£®
½â´ð ½â£º¡ß·´±ÈÀýº¯Êýy=$\frac{k}{x}$ÓëÒ»´Îº¯Êýy=kx-k+2µÄͼÏó¶¼¹ýµãA£¨-1£¬3£©£¬
¡à3=$\frac{k}{-1}$£¬3=-k-k+2£¬
¡àk=-3£¬k=-$\frac{1}{2}$£¬
¢Ùk£¼0ÕýÈ·£»
¡ß·´±ÈÀýº¯Êýy=$\frac{-3}{x}$ÓëÒ»´Îº¯Êýy=-$\frac{1}{2}$x+$\frac{5}{2}$ÔÚͬһֱ½Ç×ø±êϵÖеÄͼÏóÏཻÓÚA£¬BÁ½µã£¬
¿ÉµÃµãBµÄ×ø±êΪ£¨6£¬-$\frac{1}{2}$£©£¬
¡à¢ÚµãBµÄ×ø±êΪ£¨3£¬-1£©´íÎó£»
¢ÛÓÉͼÏó¿ÉµÃ£¬µ±x£¼-1ʱ£¬$\frac{k}{x}$£¼kx-k+2£¬ÕýÈ·£»
¢Ütan¡ÏOCD=$\frac{OD}{OC}$=$\frac{-\frac{-k+2}{k}}{-k+2}=-\frac{1}{k}$£¬ÕýÈ·£»
¹ÊÑ¡C£®
µãÆÀ ´ËÌ⿼²é·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄ½»µã£¬¹Ø¼üÊÇÀûÓôý¶¨ÏµÊý·¨µÃ³ö½»µã×ø±êÀ´·ÖÎö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿