题目内容

如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点P′(x0+5,y0-2).

(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A′、B′、C′的坐标;

(2)试说明△A′B′C′是如何由△ABC平移得到的;

(3)请直接写出△A′B′C′的面积为6.

(1)A′为(4,0)、B′为(1,3)、C′为(2,-2); (2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位); (3)△A′B′C′的面积为6. 【解析】试题分析: (1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0-2)可得A,B,C三点的坐标变化规律,进而可得答案, (2)根据点的坐标的变化规律可得△AB...
练习册系列答案
相关题目

如图,在锐角三角形ABC中,∠BAC=60°,边AC、AB的垂直平分线交于点O,交AC、AB于点D、E,则∠BOC等于____.

120° 【解析】∵AB,AC的垂直平分线交于点O, ∴OA=OB=OC ∴∠OAB=∠OBA,∠OAC=∠OCA ∴∠OAB+∠OAC=∠OBA+∠OCA=∠A=60° ∴∠OBC+∠OCB=180°-2*60°=60° ∴∠BOC=180°-60°=120°. 故答案是:120°.

是完全平方式,那么m=________.

±8 【解析】试题解析:∵若x2-mx+16是一个完全平方式, ∴m=±8, 故答案为:±8

在平面直角坐标系中,点A的坐标是(2,3),点B的坐标是(2,-2),若把线段AB向左平移3个单位后变为A′B′,则A′B′可表示为

x=-1(-2≤y≤3). 【解析】 试题解析:∵点A的坐标是(2,3),点B的坐标是(2,-2),若把线段AB向左平移3个单位后变为A′B′, ∴点A′的坐标为(-1,3);点B′的坐标为(-1,-2), ∴线段A′B′可表示为 x=-1(-2≤y≤3).

将点P向左平移2个单位,再向上平移1个单位,得到P′(-1,3),则点P的坐标是_____.

(1,2) 【解析】试题分析:根据平移特征即可判断结果。 将点P向左平移2个单位,再向上平移1个单位得到P′(-1,3),则点P的坐标是(1,2) .

已知抛物线y= -x2+mx+(7-2m)(m为常数).

(1)证明:不论m为何值,抛物线与x轴恒有两个不同的交点;

(2)若抛物线与x轴的交点A(x1,0)、B(x2,0)的距离为AB=4(A在B的左边),且抛物线交y轴的正半轴于C,求抛物线的解析式.

(1)证明见解析;(2)抛物线的解析式为y= -x2+2x+3. 【解析】试题分析:(1)要证明抛物线与x轴恒有两个不同的交点证明抛物线的判别式是正数,所以证明判别式是正数即可解决问题; (2)首先由AB=4可以得|x2-x1|=4,而(x2-x1)2=(x2-x1)2-4x1x2=16,然后利用根与系数的关系即可得到关于m方程,解方程即可求出m,也就求出了抛物线的解析式. 试题...

已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是(  )

A. (1,0) B. (2,0) C. (-2,0) D. (-1,0)

C 【解析】试题分析:把x=1,y=0代入y=x2+bx-2得: 0=1+b-2, ∴b=1, ∴对称轴为x==, ∴x==, ∴x2=-2, 它与x轴的另一个交点坐标是(-2,0). 故选C.

下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是( )

A. 5 B. 4 C. 6 D. 7

D 【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形. 故选:D.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网