题目内容

下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是( )

A. 5 B. 4 C. 6 D. 7

D 【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形. 故选:D.
练习册系列答案
相关题目

如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点P′(x0+5,y0-2).

(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A′、B′、C′的坐标;

(2)试说明△A′B′C′是如何由△ABC平移得到的;

(3)请直接写出△A′B′C′的面积为6.

(1)A′为(4,0)、B′为(1,3)、C′为(2,-2); (2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位); (3)△A′B′C′的面积为6. 【解析】试题分析: (1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0-2)可得A,B,C三点的坐标变化规律,进而可得答案, (2)根据点的坐标的变化规律可得△AB...

若|a﹣2|+b2﹣2b+1=0,则a=__,b=__.

2 1 【解析】∵|a﹣2|+b2﹣2b+1=0, ∴|a﹣2|+(b-1)2=0, ∴a-2=0,b-1=0, ∴a=2,b=1.

已知M、N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN之间关系是____.

∠MAN=∠MBN 【解析】∵原题当中没有说明点M、N在线段AB的位置, ∴可能有以下四种情况: ①如图①,点M、N在线段AB两侧时, ∵M、N是线段AB的垂直平分线上任意两点, ∴点A、B两点关于直线MN轴对称, ∴线段MA、MB两点关于直线MN轴对称, 同理线段NA、NB两点关于直线MN轴对称, ∴△MAN与△MBN关于直线MN轴对称, ∴...

一个等腰三角形的顶角为钝角,则底角a的范围是( )

A. 0°<a<9 B. 30°<a<90° C. 0°<a<45° D. 45°<a<90°

C 【解析】:∵等腰三角形顶角为钝角 ∴顶角大于90°小于180° ∴两个底角之和大于0°小于90° ∴每个底角大于0°小于45° 故选:C

下列4个图形中,不是轴对称图形的是( )

A. 有2个内角相等的三角形 B. 有1个内角为30°的直角三角形

C. 有2个内角分别为30°和120°的三角形 D. 线段

B 【解析】A.有2个内角相等的三角形,是等腰三角形,是轴对称图形,不符合题意; B.有1个内角为30°的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,故不是轴对称图形,符合题意; C.有2个内角分别为30°和120°的三角形,三个角度数分别为30°、120°、30°,是等腰三角形,是轴对称图形,不符合题意; D.线段是以其垂直平分线为对称轴,另一条对...

如图,直线AB、CD被直线EF所截,∠1、∠2是同位角,如果∠1≠∠2,那么AB与CD不平行.用反证法证明这个命题时,应先假设:_____.

AB∥CD 【解析】试题分析:利用假设法来进行证明时,首先假设结论成立,即应先假设AB∥CD.

直线y=3x-3与抛物线y=x2 -x+1的交点的个数是________ .

1 【解析】【解析】 假设直线y=3x﹣3与抛物线y=x2﹣x+1有交点,则3x﹣3=x2﹣x+1,x2﹣4x+4=0,∵△=16﹣16=0,∴方程有两个相等的实数根,∴直线y=3x﹣3与抛物线y=x2﹣x+1有1个交点. 故答案为:1.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网