题目内容

已知抛物线y= -x2+mx+(7-2m)(m为常数).

(1)证明:不论m为何值,抛物线与x轴恒有两个不同的交点;

(2)若抛物线与x轴的交点A(x1,0)、B(x2,0)的距离为AB=4(A在B的左边),且抛物线交y轴的正半轴于C,求抛物线的解析式.

(1)证明见解析;(2)抛物线的解析式为y= -x2+2x+3. 【解析】试题分析:(1)要证明抛物线与x轴恒有两个不同的交点证明抛物线的判别式是正数,所以证明判别式是正数即可解决问题; (2)首先由AB=4可以得|x2-x1|=4,而(x2-x1)2=(x2-x1)2-4x1x2=16,然后利用根与系数的关系即可得到关于m方程,解方程即可求出m,也就求出了抛物线的解析式. 试题...
练习册系列答案
相关题目

判断对错:轴对称图形也是中心对称图形;__________________

错 【解析】有的图形是轴对称图形但不一定是中心对称图形,例如等腰三角形. 故答案:错.

下列各式中不能用平方差公式分解的是( )

A. B. C. D.

C 【解析】A选项-a2+b2=b2-a2=(b+a)(b-a);B选项49x2y2-m2=(7xy+m)(7xy-m);C选项-x2-y2是两数的平方和,不能进行分解因式;D选项16m4-25n2=(4m)2-(5n)2=(4m+5n)(4m-5n), 故选C.

如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点P′(x0+5,y0-2).

(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A′、B′、C′的坐标;

(2)试说明△A′B′C′是如何由△ABC平移得到的;

(3)请直接写出△A′B′C′的面积为6.

(1)A′为(4,0)、B′为(1,3)、C′为(2,-2); (2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位); (3)△A′B′C′的面积为6. 【解析】试题分析: (1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0-2)可得A,B,C三点的坐标变化规律,进而可得答案, (2)根据点的坐标的变化规律可得△AB...

将点A(1,-3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为____.

(-2,2). 【解析】∵点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到点A′,∴点A′的横坐标为1﹣3=﹣2,纵坐标为﹣3+5=2,∴A′的坐标为(﹣2,2).故答案为:(﹣2,2).

如图,抛物线y= -x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y____0(填“>”“=”或“<”号).

< 【解析】试题分析:根据题意可得函数的对称轴为x=1,∵0<<1,则1<<2,∴x=-2<0,根据图象可得:当x<0时,y<0.

抛物线y=-3x2-x+4与坐标轴的交点个数是( )

A. 3 B. 2 C. 1 D. 0

A 【解析】试题分析:抛物线解析式y=﹣3x2﹣x+4,令x=0,解得:y=4,∴抛物线与y轴的交点为(0,4), 令y=0,得到﹣3x2﹣x+4=0,即3x2+x﹣4=0,分解因式得:(3x+4)(x﹣1)=0, 解得:x1=﹣,x2=1,∴抛物线与x轴的交点分别为(﹣,0),(1,0), 综上,抛物线与坐标轴的交点个数为3.故选:A.

若|a﹣2|+b2﹣2b+1=0,则a=__,b=__.

2 1 【解析】∵|a﹣2|+b2﹣2b+1=0, ∴|a﹣2|+(b-1)2=0, ∴a-2=0,b-1=0, ∴a=2,b=1.

如图,直线AB、CD被直线EF所截,∠1、∠2是同位角,如果∠1≠∠2,那么AB与CD不平行.用反证法证明这个命题时,应先假设:_____.

AB∥CD 【解析】试题分析:利用假设法来进行证明时,首先假设结论成立,即应先假设AB∥CD.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网