题目内容

16.如图,AB是⊙O的直径,弦DE⊥AB,C为垂足,弦DF与AB相交于点P,连接EF,EO,若AC=1,DE=2$\sqrt{3}$,∠EDF=45°,则图中阴影部分的面积(  )
A.$\frac{1}{4}π-\frac{1}{2}$B.$\frac{3}{4}π-\frac{3}{2}$C.πD.π-2

分析 在直角△COE中,利用垂径定理求得半径,再求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.

解答 解:设圆半径是r,则OC=r-2.
∵在直角△COE中,OE=r,CE=$\frac{1}{2}$DE=$\sqrt{3}$,
∴($\sqrt{3}$)2+(r-1)2=r2
解得r=2.
∵∠EDF=45°,
∴∠EOF=2∠D=90°.
∴S扇形OEF=$\frac{90}{360}$×π×22=π.
∵∠EOF=2∠D=90°,OE=OF=2,
∴SRt△OEF=$\frac{1}{2}$×OE×OF=2.
∴S阴影=S扇形OEF-SRt△OEF=π-2.
故选D.

点评 此题综合考查了垂径定理和解直角三角形及扇形的面积公式.根据已知得出圆的半径是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网