题目内容

9.半径为2的圆内有两条互相垂直的弦AB和CD,它们的交点E到圆心O的距离等于1,则AB2+CD2=(  )
A.28B.26C.18D.35

分析 作辅助线“连接AO,DO,作OM⊥CD于点M,作ON⊥AB于点N”构造矩形ENOM,然后利用勾股定理和垂径定理推知,OM2=DO2-DM2=4-($\frac{AB}{2}$)2、ON2=OA2-AN2=4-($\frac{DC}{2}$)2,所以OM2+ON2=4-($\frac{AB}{2}$)2+4-($\frac{DC}{2}$)2=1,由此解得AB2+CD2=28.

解答 解:连接AO,DO,作OM⊥CD于点M,作ON⊥AB于点N,
∵DC⊥AB,OM⊥DC,ON⊥AB,
∴四边形OMEN为矩形;
∵OM2+ME2=OE2(勾股定理),
又∵ME2=ON2
∴OM2+ON2=OE2
∵OM2=DO2-DM2=4-($\frac{DC}{2}$)2
又∵ON2=OA2-AN2=4-($\frac{AB}{2}$)2
∴OM2+ON2=4-($\frac{AB}{2}$)2+4-($\frac{DC}{2}$)2=1,
∴AB2+CD2=28.
故选A.

点评 本题主要考查了的是垂径定理和勾股定理.解得该题的关键是通过作辅助线构建矩形OMEN,利用勾股定理、矩形的性质以及垂径定理将 AB2+CD2联系在同一个等式中,然后根据代数知识求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网