题目内容

2.如图,已知△ABC中,∠C=90°,AC=BC=2$\sqrt{2}$,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,则C′B的长为(  )
A.2$\sqrt{3}$-2B.$\sqrt{3}$C.4-2$\sqrt{2}$D.2

分析 如图,作辅助线;证明△ABB′为等边三角形,此为解决问题的关键性结论;证明△BB′C′≌△BAC,得到∠B′BC′=∠ABC′,即可证明BC'是等腰三角形边上的角平分线,即高线,延长BC'交AB'于点D,则BC'=BD-C'D.

解答 解:如图,连接BB′,延长BC'交AB'于点D;由题意得:
AB=AB′,∠BAB′=60°,
∴△ABB′为等边三角形,
∴∠B′BA=60°,BB′=BA;
在△BB′C′与△BAC中,
$\left\{\begin{array}{l}{BB′=BA}\\{BC′=BC′}\\{B′C′=AC′}\end{array}\right.$,
∴△BB′C′≌△BAC(SSS),
∴∠B′BC′=∠ABC′=30°,即BD是等边△ABB′边上的高.
又∵AB′=AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{(2\sqrt{2})^{2}+(2\sqrt{2})^{2}}$=4,
∴C′D=$\frac{1}{2}$AB′=2,BD=AB•sin60°=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$.
∴BC′=BD-C′D=2$\sqrt{3}$-2.
故选A.

点评 本题主要考查了旋转变换的性质、全等三角形的判定及其性质的应用等几何知识点问题.解题的关键是作辅助线;灵活运用旋转变换的性质、全等三角形的判定来分析、解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网