题目内容

13.如图,在△ABC中,∠BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD⊥AD于D,CE⊥AD于E,交AB于点F,CE=10,BD=4,则DE的长为(  )
A.6B.5C.4D.8

分析 根据∠BAC=90°,AB=AC,得到∠BAD+∠CAD=90°,由于CE⊥AD于E,于是得到∠ACE+∠CAE=90°,根据余角的性质得到∠BAD=∠ACE,推出△ABD≌△ACE,根据全等三角形的性质即可得到结论.

解答 解:∵∠BAC=90°,AB=AC,
∴∠BAD+∠CAD=90°,
∵CE⊥AD于E,
∴∠ACE+∠CAE=90°,
∴∠BAD=∠ACE,
在△ABD与△ACE中,
$\left\{\begin{array}{l}{∠D=∠AEC=90°}\\{∠BAD=∠ACE}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△ACE,
∴AE=BD=4,AD=CE=10,
∴DE=AD-AE=6.
故选A.

点评 本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,利用余角的性质得出∠BAD=∠ACE是解题关键.

练习册系列答案
相关题目
1.针对儿童选秀类节目,部分专家学者指出,喧闹的儿童选秀节目排名对孩子健康成长不利,无论是排名靠前或靠后,商业化操作的选秀都可能对孩子童真造成不可挽回的伤害.针对这一现象,记者随机调查了某小学的若干名学生家长,从“赞成”“反对”“无所谓”“其他”四个方面对“儿童选秀”的现象进行了调查,将调查结果统计整理后,制成了如图所示的统计图,根据统计图信息,请回答下列问题:

(1)求本次共随机调查了多少名学生家长;
(2)求扇形统计图中,对参与“儿童选秀”持“赞成”态度的学生家长人数所占圆心角的度数,并补全条形统计图和扇形统计图;
(3)在调查过程中,记者发现有一部分学生家长认为在“儿童选秀”节目中,如果合理地引导孩子,不仅能丰富他们的业余生活,还能增长见识,该记者打算在有这种想法的家长中找出一名家长,作进一步地采访,其中甲、乙两名学生家长愿意交流想法,记者提议采取抽签的方式决定采访哪位家长:准备3张完全相同的分别标有数字1、2、3的卡片,卡片均数字朝下放置,洗匀后一个人任意从中摸出一张卡片,记下数字后放回,允许洗匀后由第二个人摸出一张卡片,若学生家长甲抽到的数字比学生家长乙大,则采访学生家长甲,否则采访学生家长乙.请你用列表法或画树状图的方法求学生家长甲被采访的概率.
(4)如果该小学的在校学生有5000人,估计该小学的学生家长(父母双方只选一方的意见)中,对小学生参与“儿童选秀”节目持“赞成”态度的人数.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网