题目内容

16.如图,D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,点O是在△ABC的内部的一个动点,连接OA、OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.
(1)求证:四边形DEFG是平行四边形;
(2)当OA=BC时,求证:四边形DEFG是菱形.

分析 (1)首先利用三角形中位线的性质得出DE∥BC,DE=$\frac{1}{2}$BC,同理,GF∥BC,GF=$\frac{1}{2}$BC,即可得出DE∥GF,DE=GF即可得出四边形DGFE是平行四边形;
(2)利用(1)中所求,只要邻边再相等即可得出答案.

解答 (1)证明:∵D、E分别是边AB、AC的中点.
∴DE∥BC,DE=$\frac{1}{2}$BC.
同理,GF∥BC,GF=$\frac{1}{2}$BC.
∴DE∥GF,DE=GF.
∴四边形DEFG是平行四边形.

(2)证明:如图,连接OA.由(1)得出四边形DEFG是平行四边形,
∵AO=BC,
∴GD=$\frac{1}{2}$AO,GF=$\frac{1}{2}$BC,
∴DG=GE,
∴平行四边形DEFG是菱形.

点评 此题主要考查了中点四边形的判定以及三角形的中位线的性质和平行四边形以及菱形的判定等知识,熟练掌握相关的定理是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网