题目内容

6.如图,在△ABC中,AB=AC=2,∠BAC=120°,以AB为直径的⊙O交BC于点M,MN⊥AC于点N,图中阴影部分的面积为(  )
A.$\frac{3\sqrt{3}}{4}$-$\frac{π}{6}$B.$\frac{3\sqrt{3}}{8}$-$\frac{π}{6}$C.$\frac{3\sqrt{3}}{4}$-$\frac{π}{12}$D.$\frac{3\sqrt{3}}{8}$-$\frac{π}{12}$

分析 先证明MN为⊙O切线,求阴影部分的面积要把它转化成S梯形ANMO-S扇形OAM,再分别求的这两部分的面积求解.

解答 解:证明:连接OM.
∵OM=OB,
∴∠B=∠OMB.
∵AB=AC,
∴∠B=∠C.
∴∠OMB=∠C.
∴OM∥AC.
∵MN⊥AC,
∴OM⊥MN.
∵点M在⊙O上,
∴MN是⊙O的切线;
连接AM.
∵AB为直径,点M在⊙O上,
∴∠AMB=90°.
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°.
∴∠AOM=60°.
又∵在Rt△AMC中,MN⊥AC于点N,
∴∠AMN=30°.
∴AN=AM•sin∠AMN=AC•sin30°•sin30°=$\frac{1}{2}$.
∴MN=AM•cos∠AMN=AC•sin30°•cos30°=$\frac{\sqrt{3}}{2}$.
∴S梯形ANMO=$\frac{(AN+OM)•MN}{2}$=$\frac{3\sqrt{3}}{8}$,
S扇形OAM=$\frac{60π•{1}^{2}}{360}$=$\frac{π}{6}$,
∴S阴影=$\frac{9\sqrt{3}-4π}{24}$=$\frac{3\sqrt{3}}{8}$-$\frac{π}{6}$.
故选B.

点评 本题考查了圆周角定理、等腰三角形的性质以及扇形面积的计算,明确切线的判定即利用图形分割法求不规则图形面积是解题的思路.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网