题目内容

20.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.
(1)如图1,若四边形ABCD是矩形,且DE⊥CF.求证:$\frac{DE}{CF}$=$\frac{AD}{CD}$;
(2)如图2,若四边形ABCD是平行四边形,试探究:当∠B+∠EGC=180°时,求证:$\frac{DE}{CF}$=$\frac{AD}{CD}$.

分析 (1)根据矩形性质得出∠A=∠FDC=90°,求出∠CFD=∠AED,证出△AED∽△DFC即可;
(2)证△DFG∽△DEA,得出对应边成比例,证△CGD∽△CDF,得出对应边成比例,即可得出答案;

解答 (1)证明:∵四边形ABCD是矩形,
∴∠A=∠FDC=90°,
∵CF⊥DE,
∴∠DGF=90°,
∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC,
∴$\frac{DE}{CF}$=$\frac{AD}{CD}$;

(2)证明:∵四边形ABCD是平行四边形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EGC=180°
∴∠A=∠EGC=∠FGD,
∵∠FDG=∠EDA,
∴△DFG∽△DEA,
∴$\frac{DE}{AD}=\frac{DF}{DG}$,
∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,
∴∠CGD=∠CDF,
∵∠GCD=∠DCF,
∴△CGD∽△CDF,
∴$\frac{DF}{DG}=\frac{CF}{CD}$,
∴$\frac{DE}{AD}=\frac{CF}{CD}$,
∴$\frac{DE}{CF}$=$\frac{AD}{CD}$.

点评 本题考查了矩形性质和判定,勾股定理,平行四边形的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定的应用,主要考查学生综合运用性质和定理进行推理的能力,题目比较好.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网