题目内容
11.解方程组:①$\left\{\begin{array}{l}{\frac{x+1}{5}-\frac{y-1}{2}=-1}\\{x+y=2}\end{array}\right.$;
②$\left\{\begin{array}{l}{\frac{y}{3}-\frac{x+1}{6}=3}\\{2(x-\frac{y}{2})=3(x+\frac{y}{18})}\end{array}\right.$;
③$\left\{\begin{array}{l}{x+y+z=2}\\{x-y+z=0}\\{x-z=4}\end{array}\right.$.
分析 ①方程组整理后,利用加减消元法求出解即可;
②方程组整理后,利用加减消元法求出解即可;
③方程组利用加减消元法求出解即可.
解答 解:①方程组整理得:$\left\{\begin{array}{l}{2x-5y=-17①}\\{x+y=2②}\end{array}\right.$$\left\{\begin{array}{l}{2y-x=19①}\\{6x+7y=0②}\end{array}\right.$,
①+②×5得:7x=-7,
解得:x=-1,
把x=-1代入②得:y=3,
则方程组的解为$\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$;
②方程组整理得:得$\left\{\begin{array}{l}{2y-x=19①}\\{6x+7y=0②}\end{array}\right.$,
①×6+②得:19y=114,
解得:y=6,
把y=6代入①得:x=-7,
则方程组的解为$\left\{\begin{array}{l}{x=-7}\\{y=6}\end{array}\right.$;
③$\left\{\begin{array}{l}{x+y+z=2①}\\{x-y+z=0②}\\{x-z=4③}\end{array}\right.$,
①+②得:x+z=1④,
③+④得:2x=5,
解得:x=2.5,
把x=2.5代入④得:z=-1.5,
把x=2.5,z=-1.5代入①得:y=1,
则方程组的解为$\left\{\begin{array}{l}{x=2.5}\\{y=1}\\{z=-1.5}\end{array}\right.$.
点评 此题考查了解二元一次方程组,以及解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
| A. | |a|一定是正数 | |
| B. | 在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线 | |
| C. | 两个无理数的和仍是无理数 | |
| D. | 如果两个角互补,那么一个是锐角,一个是钝角 |
| A. | -0.5 | B. | 0.5 | C. | 1 | D. | 2 |
| A. | 7,5,14,5 | B. | 6,8,3,4 | C. | 3,5,9,12 | D. | 2,3,6,12 |
| A. | x2+y2=5 | B. | $\frac{1}{x}$+$\frac{1}{y}$=2 | C. | x+y+z=3 | D. | $\frac{x}{2}$-$\frac{y}{3}$=$\frac{1}{4}$ |
| A. | 3 | B. | 3$\sqrt{2}$ | C. | 3$\sqrt{3}$ | D. | 2$\sqrt{6}$ |