题目内容
3.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图1中m的值是32.
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
分析 (1)根据统计图可以分别求得本次接受随机抽样调查的学生人数和图1中m的值;
(2)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;
(3)根据统计图中的数据可以估计该校本次活动捐款金额为10元的学生人数.
解答 解:(1)由统计图可得,
本次接受随机抽样调查的学生人数为:4÷8%=50,
m%=1-8%-16%-20%-24%=32%,
故答案为:50,32;
(2)本次调查获取的样本数据的平均数是:$\frac{4×5+16×10+12×15+10×20+8×30}{50}$=16(元),
本次调查获取的样本数据的众数是:10元,
本次调查获取的样本数据的中位数是:15元;
(3)该校本次活动捐款金额为10元的学生人数为:1900×$\frac{16}{50}$=608,
即该校本次活动捐款金额为10元的学生有608人.
点评 本题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.
练习册系列答案
相关题目
13.
数学课上探究一次函数图象与反比例函数图象有交点时的相关结论:已知直线y=kx+b与x轴、y轴分别交于点C(x,0)、D(0,y),与双曲线y=$\frac{m}{x}$交于点A(x1,y1),B(x2,y2).
(1)填空与观察:
(2)发现与验证:
数学学习小组在探究图象交点时发现以下结论:
①x1+x2=x;②y1+y2=y;③当b2+4mk≥0时,两函数图象一定会相交.
你认为以上探究的结论中正确的有①②③(填序号),请选择一个加以证明.
(3)应用与拓展:
连接AO,BO,判断△ACO与△BOD的面积有什么关系,并说明理由.
(1)填空与观察:
| 函数关系式 | C(x,0) | D(0,y) | A (x1,y1) | B(x2,y2) |
| y=2x+2,y=$\frac{4}{x}$,如图1 | (-1,0) | (0,2) | (1 , 4) | (-2,-2) |
| y=x-3,y=$\frac{10}{x}$,如图2 | (3,0) | (0,-3) | (5,2) | ( -2, -5) |
数学学习小组在探究图象交点时发现以下结论:
①x1+x2=x;②y1+y2=y;③当b2+4mk≥0时,两函数图象一定会相交.
你认为以上探究的结论中正确的有①②③(填序号),请选择一个加以证明.
(3)应用与拓展:
连接AO,BO,判断△ACO与△BOD的面积有什么关系,并说明理由.
18.
如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒$\frac{π}{2}$个单位长度,则第2017秒时,点P的坐标是( )
| A. | (2016,0) | B. | (2017,1) | C. | (2017,-1) | D. | (2018,0) |