题目内容

6.如图1,点A是线段BC上一点,△ABD,△AEC都是等边三角形,BE交AD于点M,CD交AE于N.
(1)求证:BE=DC;
(2)求证:△AMN是等边三角形;
(3)将△ACE绕点A按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断(1)、(2)两小题结论是否仍然成立,并加以证明.

分析 (1)根据等边三角形的性质得到AB=AD,AC=AE,∠DAB=∠EAC=60°,则∠DAC=∠BAE,根据“SAS”可判断△ABE≌△ADC,则BE=DC;
(2)由△ABE≌△ADC得到∠ABE=∠ADC,根据“AAS”可判断△ABM≌△ADN(ASA),则AM=AN;∠DAE=60°,根据等边三角形的判定方法可得到△AMN是等边三角形.
(3)判定结论1是否正确,也是通过证明△ABE≌△ADC求得.这两个三角形中AB=AD,AE=AC,∠BAE和∠CAD都是60°+∠ACB,因此两三角形就全等,BE=CD,结论1正确.
将△ACE绕点A按顺时针方向旋转90°,则∠DAC>90°,因此三角形AMN绝对不可能是等边三角形.

解答 证明:(1)∵△ABD,△AEC都是等边三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,$\left\{\begin{array}{l}{AB=AD}\\{∠BAE=∠DAC}\\{AE=AC}\end{array}\right.$,
∴△ABE≌△ADC(SAS),
∴BE=DC;

(2)由(1)证得:△ABE≌△ADC,
∴∠ABE=∠ADC.
在△ABM和△ADN中,$\left\{\begin{array}{l}{AB=AD}\\{∠ABM=∠ADN}\\{∠BAM=∠DAN}\end{array}\right.$,
∴△ABM≌△ADN(ASA),
∴AM=AN.
∵∠DAE=60°,
∴△AMN是等边三角形;

(3)∵△ABD,△AEC都是等边三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,$\left\{\begin{array}{l}{AB=AD}\\{∠BAE=∠DAC}\\{AE=AC}\end{array}\right.$,
∴△ABE≌△ADC(SAS),
∴BE=DC,∠ABE=∠ADC,
∵∠BAC=90°
∴∠MAN>90°,
∵∠MAN≠60°,
∴△AMN不是等边三角形,
∴(1)的结论成立,(2)的结论不成立.

点评 本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质、矩形的性质、等边三角形的判定与性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网