题目内容

抛物线y=-3x2-x+4与坐标轴的交点个数是( )

A. 3 B. 2 C. 1 D. 0

A 【解析】试题分析:抛物线解析式y=﹣3x2﹣x+4,令x=0,解得:y=4,∴抛物线与y轴的交点为(0,4), 令y=0,得到﹣3x2﹣x+4=0,即3x2+x﹣4=0,分解因式得:(3x+4)(x﹣1)=0, 解得:x1=﹣,x2=1,∴抛物线与x轴的交点分别为(﹣,0),(1,0), 综上,抛物线与坐标轴的交点个数为3.故选:A.
练习册系列答案
相关题目

如图,不是中心对称图形的是( )

A. B. C. D.

B 【解析】根据中心对称的定义可以知道B选项不是中心对称图形.故选B.

已知抛物线y= -x2+mx+(7-2m)(m为常数).

(1)证明:不论m为何值,抛物线与x轴恒有两个不同的交点;

(2)若抛物线与x轴的交点A(x1,0)、B(x2,0)的距离为AB=4(A在B的左边),且抛物线交y轴的正半轴于C,求抛物线的解析式.

(1)证明见解析;(2)抛物线的解析式为y= -x2+2x+3. 【解析】试题分析:(1)要证明抛物线与x轴恒有两个不同的交点证明抛物线的判别式是正数,所以证明判别式是正数即可解决问题; (2)首先由AB=4可以得|x2-x1|=4,而(x2-x1)2=(x2-x1)2-4x1x2=16,然后利用根与系数的关系即可得到关于m方程,解方程即可求出m,也就求出了抛物线的解析式. 试题...

如图,二次函数y=x2-6x+n的部分图象如图所示,若关于x的一元二次方程x2-6x+n=0的一个解为x1=1,则另一个解x2= ___________.

5. 【解析】试题分析:根据二次函数的图象与x轴的交点关于对称轴对称,直接求出x2的值. 试题解析:由图象知,对称轴为x=- 根据二次函数的图象的对称性, 解得:x2=5.

已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是(  )

A. (1,0) B. (2,0) C. (-2,0) D. (-1,0)

C 【解析】试题分析:把x=1,y=0代入y=x2+bx-2得: 0=1+b-2, ∴b=1, ∴对称轴为x==, ∴x==, ∴x2=-2, 它与x轴的另一个交点坐标是(-2,0). 故选C.

如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.6,x2=( )

A. -1.6 B. 3.2 C. 4.4 D. 以上都不对

C 【解析】根据图象知道抛物线的对称轴为x=3,根据抛物线是轴对称图象和已知条件即可求出x2. 【解析】 由抛物线图象可知其对称轴为x=3, 又抛物线是轴对称图象, ∴抛物线与x轴的两个交点关于x=3对称, 而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2, 那么两根满足2×3=x1+x2, 而x1=1.6, ∴x2=4.4. ...

如图,长方形ABCD中,AB=2,点E在BC上并且AE=EC,若将矩形纸片沿AE折叠,使点B恰好落在AC上,则AC的长为多少?

4 【解析】试题分析:根据折叠的性质及等边对等角的性质,可得到∠BAE=∠EAC=∠ECA,根据三角形内角和定理即可求得∠ECA的度数,再根据直角三角形的性质不难求得AC的长. 试题解析:如图,设点B落在AC上后,为点F. 则有△AFE≌△ABE, ∴∠AFE =∠B =90° ,AF =AB =2, ∴FE⊥AC, ∵AE=EC, ∴CF =AF =2,...

某地震救援队探测出某建筑物废墟下方点处有生命迹象,已知废墟一侧地面上两探测点A,B相距3米,探测线与地面的夹角分别是 (如图),试确定生命所在点C的深度.(结果精确到米,参考数据: ,)

生命所在点的深度约为米 【解析】试题分析:过点C作CD⊥AB于点D,根据题意得出∠CAD=30°,∠CBD=60°,分别根据Rt△ACD和Rt△BCD的三角函数将AD和BD用含CD的代数式表示,然后根据AB=3得出答案. 试题解析:过作于点 ∵探测线与地面的夹角为和, ∴,, 在Rt中, , ∴, 在Rt中, , ∴, 又∵ ∴ 解得, ∴生命所在点的深度...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网