题目内容

19.如图,王虎将一块长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为$\frac{7}{2}$πcm.

分析 点A翻滚到A2位置时,共走过的路径长是二段弧的弧长,第一次的旋转是以B为圆心,AB为半径,旋转的角度是90度,第二次是以C为圆心,AC为半径,旋转的角度是60度,所以根据弧长公式可得.

解答 解:根据弧长公式可得:l=$\frac{90π×5}{180}$+$\frac{60π×3}{180}$=$\frac{7}{2}$π(cm).
故答案为$\frac{7}{2}$πcm.

点评 本题考查了弧长的计算及矩形的性质,解答本题的关键是找准所旋转的弧的圆心和半径及圆心角的度数,有一定的难度,注意仔细观察.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网